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At	 their	 heart,	 blockchains	 store	 lists	 of	 transactions.	 While	 the	
transactions	are	originated	from	and	directed	towards	individual	accounts,	
they	 are	 not	 ordered	 by	 account.	 Instead,	 the	 blockchain	 orders	
transactions	 in	append-only,	 time-ordered	lists	called	blocks.	This	pushes	
the	 task	 of	 collating	 lists	 of	 transactions	 to	 other	 parts	 of	 the	 system.	
Current	 implementations	 impose	 this	 task	 on	 the	 application	 developer.	
QuickBlocks™,	 as	 described	 elsewhere	 [3][4],	 intends	 to	 relieve	 the	
application	 developer	 of	 this	 burden.	 In	 this	 paper,	 we	 describe	
optimizations	 to	 QuickBlocks™	 that	 simultaneously	 allow	 for	 timely	
accumulation	 of	 per-account	 lists	 of	 transactions	 and	 minimize	 the	
resources	 needed	 to	 accomplish	 this	 task.	 This	 attention	 to	 minimizing	
resource	 usage	 on	 the	 target	 machine	 allows	 QuickBlocks™	 to	 realize	 a	
fully	 decentralized	 solution	 to	 this	 problem.	 Keywords:	 blockchain,	
Ethereum,	data	analytics,	blockchain	auditing,	blockchain	accounting	
	
	
	
	

Introduction 

Blockchains	 store	 lists	 of	 transactions.	
These	 transactions	are	 included	 in	a	block	 in	
a	 time-oriented	 basis.	 The	 addresses1 	that	
initiate	or	receive	transactions	are,	of	course,	
stored	on	the	blockchain,	but	not	in	an	easily	
accessible	manner.	 This	 implies	 that	 quickly	
building	 lists	 of	 transactions,	 given	 a	
particular	 address	 or	 a	 collection	 of	
addresses,	 is	 time	 consuming	 and	 more	
difficult	than	it	should	be.	

This	 difficulty	 is	 exacerbated	 by	 the	 fact	
that	 the	 receiving	 address	 of	 a	 transaction	
may	be	a	“smart	contract”	which	may	further	
initiate	 transfers	 of	 value	 to	 other	 accounts.	
Obtaining	 a	 list	 of	 these	 “internal	

																																																													
1	We	use	the	terms	‘account’	and	‘address’	
interchangeably	in	this	paper.	

transactions,”	 particularly	 those	 incoming	 to	
an	address,	is	an	onerous	process.	

One	 obvious	 method	 of	 obtaining	 per-
account	 lists	 of	 transactions	 is	 to	 index	 the	
transactions	 by	 addresses.	 We	 believe,	
however,	that	this	imposes	too	high	a	burden	
on	 the	 target	 machine.	 Our	 software,	
QuickBlocks™	 avoids	 direct	 indexing	 of	
accounts.	 In	 this	way,	we	 are	 able	 to	build	 a	
decentralized	solution.	

In	 a	 recent	 paper	 [3],	 we	 describe	 a	
method	 of	 obtaining	 off-chain,	 decentralized	
lists	 of	 transactions	 per-account	 from	
blockchains.	 In	 that	 paper,	 we	 describe	 a	
method	of	visiting	each	block	in	a	local	binary	
cache	 searching	 for	 transactions	 of	 interest.	
That	process,	while	able	to	build	an	accurate	
list	 of	 transactions,	 is	 slow,	 requiring	
traversing	 every	 transaction	 (both	 internal	
and	external)	in	every	block.	
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In	 that	 previous	 paper,	 we	 furthermore	
present	 an	 optimization	 to	 per-block	
traversal	 that	 we	 call	 “Enhanced	 Bloom	
Filters.”	Enhanced	Bloom	Filters	allows	us	 to	
minimize	the	search	time	of	the	algorithm.	

The	 current	 paper	 discusses	 an	
improvement	to	Enhanced	Bloom	Filters	that	
we’ve	 called	 “Enhanced	 Adaptive	 Bloom	
Filters.”	 Enhanced	 Adaptive	 Bloom	 Filters	
significantly	 improves	 upon	 all	 previous	
methods	 of	 identifying	 per-address	 lists	 of	
transactions	of	interest	that	we	are	aware	of.	

The	 reader	 is	 advised	 to	 familiarize	 him	
or	 herself	 to	 the	 idea	 of	 a	 Bloom	 filters	 [5].	
This	 will	 allow	 the	 reader	 to	 better	
understand	the	following	discussion.	

Bloom Filters 

A	 bloom	 filter	 is	 a	 fixed-length	 array,	
initially	 empty,	 of	 𝑚 bits	 representing	
members	in	a	set.	An	arbitrary	set	member	is	
inserted	 into	 the	 filter	 by	 hashing	 its	 value	
and	then	using	one	of	𝑘	selection	functions	to	
choose	 a	 bit	 to	 twiddle	 in	 the	 filter	 (where	
twiddle	 means	 set	 to	 true).	 This	 process	 is	
repeated	for	each	member	in	the	set.	
At	a	 later	 time,	 if	 one	wishes	 to	 check	 for	

the	 existence	 of	 a	 particular	 item	 in	 the	 set,	
one	 first	 creates	 a	 “candidate”	 bloom	 filter	
from	that	item	alone.	If	the	item	is	in	the	set,	
the	 same	 𝑘# 	bits	 will	 be	 set	 in	 both	 the	
candidate	 bloom	 filter	 and	 bloom	 filter	
representing	the	set.	Bloom	filters	may	report	
false	 positives,	 as	 the	 same	𝑘# 	bits	 may	 have	
been	set	by	more	than	one	inserted	member,	
but	 a	 bloom	 filter	 will	 never	 report	 a	 false	
negative.	 If	 one	of	 the	𝑘# 	bits	 is	 not	 twiddled	
in	 the	 filter,	 the	 item	 cannot	 have	 been	 a	
member	 of	 the	 set.	 This	 allows	 one	 to	
eliminate	 from	 further	 consideration	 any	
items	that	are	known	not	to	be	in	the	set.	

The	 value	 of	 𝑚 	and	 𝑘 	are	 arbitrary	
depending	 on	 the	 desired	 characteristics	 of	
the	bloom	 filter.	Higher	 values	of	𝑚	will	 lead	
to	a	lower	probability	of	false	positives	as	will	
higher	values	for	𝑘.	However,	increasing	both	

of	 these	 values	 comes	 at	 the	 cost	 of	 higher	
processing	 and	 memory	 costs.	 For	 our	
application,	 we’ve	 chosen	 values	 (following	
the	Ethereum	Yellow	Paper	 [1])	 of	𝑚	=	2048	
and	𝑘 = 3.	

Bloom Filters in Existing Blockchains 

Existing	 blockchains	 utilize	 bloom	 filters	
for	 various	 reasons.	 In	 the	 Ethereum	
blockchain	 for	 example,	 bloom	 filters	 are	
used	in	support	of	a	publication/subscription	
(pub/sub)	model	of	delivering	notifications	of	
triggered	 events	 to	 distributed	 applications.	
Here,	 they	 are	 used	 in	 order	 to	 identify	
addresses	 and	 other	 data	 involved	 in	 (or	
created	during)	the	production	of	 log	entries	
(see	 [1]	 and	 [5]).	 The	 Ethereum	 blockchain	
stores	bloom	filters	at	every	 transaction	 that	
produced	 one	 or	 more	 log	 entry.	 These	
transaction-level	 bloom	 filters	 are	 then	
“rolled-up”	 to	 the	 block	 level.	 We	 call	 these	
“node-generated”	bloom	filters.	Originally,	we	
stored	 these	 blooms	 in	 our	 binary	 cache,	
which	 imposed	 a	 storage	 cost	 of	 nearly	 400	
megabytes	for	the	first	4,000,000	blocks2.	
While	 this	 data	 is	 useful	 for	 supporting	

pub/sub	 models	 and	 other	 purposes,	 the	
existing	 bloom	 filters	 did	 not	 store	 the	
information	 we	 needed	 to	 build	 lists	 of	
transactions	per	account.	
In	 particular,	 they	 did	 not	 store	 set	

membership	 for	 all	 initiating	 and	 receiving	
addresses	 for	 external	 and	 internal	
transactions.	 We	 sought	 a	 method	 to	 create	
bloom	 filters	 that	 would	 provide	 this	
information,	 while	 at	 the	 same	 time	
eliminating	the	existing	bloom	filters	from	the	
binary	 cache.	We	 refer	 to	 this	method	 in	 [3]	
as	Enhanced	Bloom	Filters.	

 

																																																													
2	Measurements	for	this	paper	were	made	at	block	
4,0000,000	on	or	around	July	14,	2017.	
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Enhanced Bloom Filters (Version 1) 

In	 our	 first,	 naïve,	 implementation	 of	
Enhanced	Bloom	Filters,	we	stored	individual	
bloom	 filters	 per	 block	 as	 detailed	 in	 [3].	
While	 this	 method	 works	 well	 to	 identify	
blocks	 that	 contain	 transactions	 of	 interest	
per	 account,	 it	 has	 some	 drawbacks.	 Chief	
among	 these	 drawbacks	 is	 the	 fact	 that	 the	
number	 of	 files	 needed	 to	 store	 the	 bloom	
filters	was	of	the	same	order	as	the	number	of	
blocks	 processed,	 𝑂(𝑛)	 where	 𝑛 	is	 the	
number	 of	 blocks.	 We	 produce	 Enhanced	
Bloom	Filters	per	block	following	the	method	
described	 in	 the	 “The	 Algorithm”	 section	
below.	
While	 Enhanced	 Bloom	 Filters	 do	

eliminate	the	processing	of	blocks	known	not	
to	 contain	 transactions	 of	 interest,	 and	
thereby	 lower	 the	 processing	 cost	 of	 finding	
such	 transactions,	 and	 while	 they	
furthermore	eliminate	 the	need	 to	store	per-
transaction	bloom	filters	in	the	binary	cache,	
they,	undesirably,	require	that	we	open	a	file	
from	disc	at	each	block.	

Enhanced Bloom Filters (Version 2) 

As	presented	in	[3],	we	improve	upon	the	
naïve	 per-block	 Enhanced	 Bloom	 Filter	
method	by	preparing	filters	for	each	group	of	
five	blocks	(an	arbitrarily	chosen	value).	This	
process	 produces	 a	 consistent	 number	 of	
bloom	filters	per	block	(twenty	bloom	filters	
per	one	hundred	blocks).	One	desirable	side-
effect	 of	 this	 method	 is	 that	 it	 provides	 an	
easily	 calculable	 number	 representing	 the	
storage	 requirements	 for	 the	 bloom	 filters.	
Another	desirable	effect	is	that	the	number	of	
disc	reads	is	reduced	by	a	factor	of	five.	This	
method	 improves	 on	 our	 naïve	 method	 by	
lessening	 the	 number	 of	 files	 stored	 on	 disc	
by	a	factor	of	five,	as	well.	
However,	 the	 non-adaptive	method	 has	 a	

significant	shortcoming:	in	many	cases,	these	
five-block	 bloom	 filters	 are	 either	 seriously	
underutilized	or	seriously	oversaturated.	The	

number	 of	 transactions	 per	 block	 ranges	
widely	from	zero	to	hundreds	of	transactions.	
Furthermore,	 the	 number	 of	 internal	
transactions	 per	 external	 transaction	 may	
range	 widely	 as	 well,	 from	 zero	 internal	
transactions	 for	 a	 simple	 value	 exchange	 to	
many	 hundreds	 of	 internal	 transactions	 for	
some	smart	contract	invocations.	
The	 present	 idea	 creates	 what	 we	 call	

Enhanced	 Adaptive	 Bloom	 Filter.	 Enhanced	
Adaptive	bloom	filters	“fill	up”	to	a	consistent	
level	 before	 being	 written	 to	 storage.	 This	
creates	 less,	 but	 more-fully-utilized	 bloom	
filters	 during	 low-traffic	 periods	 while	
creating	 (possibly	 more)	 less-saturated	
bloom	filters	during	high-traffic	times.	
Given	 the	 nature	 of	 the	 blockchain	 data,	

where	 the	 number	 of	 transactions	per	 block	
(and	 therefore	 the	 number	 of	 addresses	 per	
block)	varies	significantly	from	block	to	block,	
this	 both	 lessens	 storage	 and	 increases	
effectiveness	of	each	bloom	filter.	

Enhanced Adaptive Bloom Filters 

In	 order	 to	 address	 the	 higher-than-
necessary	 storage	 costs	 and	 the	 less-than-
effective	 nature	 of	 using	 a	 fixed	 number	 of	
blocks	 per	 bloom	 filter,	 we’ve	 implemented	
Enhanced	 Adaptive	 Bloom	 Filters.	 In	 this	
method,	we	store	a	bloom	filter	when	it	“fills-
up”	 as	 opposed	 to	 after	 inserting	 a	 fixed	
number	 of	 blocks	 or	 elements.	 This	 both	
lessens	 the	 storage	 requirements	 and	
increases	the	effectiveness	of	each	filter.	
In	order	 to	understand	this	 idea,	we	need	

to	define	a	simple	measure,	called	𝑏𝑖𝑡𝑠/0#11231	
that,	while	perhaps	a	bit	whimsically	named,	
has	a	simple	and	precise	definition:	
	

𝑏𝑖𝑡𝑠/0#11231 = 	 4 𝑏𝑖𝑡#

56#/7

#89

	

	
That	 is,	 the	number	of	 bits	 set	 to	 true	 in	 the	
filter.	We	further	define	𝑝𝑐𝑡/0#11231	thus:	
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𝑝𝑐𝑡/0#11231 =
𝑏𝑖𝑡𝑠/0#11231

𝑚
	

	
where	𝑚	is	the	number	of	bits	in	the	filter	(in	
our	case,	2048).	
It	 is	 now	 a	 simple	matter	 to	describe	 the	

algorithm	for	storing	a	less	imposing	amount	
of	 data	 on	 the	 target	 machine	 while	
simultaneously	 lowering	 each	 filter’s	 rate	 of	
false	positives	 thereby	 improving	 the	overall	
performance	 of	 building	 decentralized	 per-
account	 lists	 of	 transactions	 of	 interest.	
Following	 this	 we	 present	 supporting	 data	
arguing	for	the	effectiveness	of	our	solution.	

The Algorithm 

Each	 block	 in	 a	 blockchain	 stores	 zero	 or	
more	 transactions.	 Each	 transaction	 stores,	
among	other	things,	an	initiating	address	(i.e.	
to)	 and	 a	 receiving	 address	 (i.e.	 from).	 A	
transaction’s	 receipt	 may	 optionally	 store	
contractAddress	which,	 if	present,	 represents	
a	newly	created	smart	contract.	Each	of	these	
addresses	 is	 “of	 interest”	 if	 one	 wishes	 to	
build	a	list	of	transactions	per	account	as	we	
do.	
If	the	receiving	address	is	a	smart	contract,	

there	may	also	be	one	or	more	traces	present	
in	 the	 transaction	which	 include	 to	and	 from	
fields	 of	 their	 own.	 These	 addresses	 are	 “of	
interest”	 as	 well.	 (Traces	 may	 be	 arbitrarily	
deep	 as	 smart	 contracts	may	 call	 into	 other	
smart	 contracts	 which	 may	 further	 call	 into	
still	 more	 smart	 contracts	 up	 to	 the	 block’s	
gas	limit.)	
There	 are	 many	 other	 data	 fields	 in	 a	

transaction	where	addresses	may	appear.	For	
example,	 they	 may	 be	 embedded	 as	 a	
parameter	in	the	input	data	field	or	as	part	of	
a	 trace.	 Other	 possible	 appearances	 of	
addresses	 are	 in	 the	 receipt’s	 logs	 data	
structure.	
We	 choose	 not	 to	 store	 these	 other	

addresses	 in	 the	 Enhanced	 Adaptive	 Bloom	
Filter	 under	 the	 argument	 that	 they	 are	
redundant	and	therefore	are	not	of	interest.		

To	understand	why	this	is	true,	consider	a	
smart	contract	that	simply	stores	all	data	sent	
to	 it.	 Perhaps	 the	 data	 is	 a	 list	 of	 addresses.	
Because	we	are	 interested	only	 in	addresses	
that	participated	 in	 a	 transaction,	 these	data	
are	not	of	interest.	The	fact	that	addresses	are	
being	 stored	 in	 the	 smart	 contract	 does	 not	
mean	they	had	an	effect	on	a	transaction.	
We	 therefore	 distinguish	 ‘addresses	 of	

interest’	 and	 other	 types	 of	 addresses	 that	
may	appear	in	transactions.	
Only	 addresses	 that	 are	 directly	 involved	

by	 either	 initiating	 or	 receiving	 external	 or	
internal	 transactions	 are	 inserted	 into	 the	
bloom	filters.	
	
After	identifying	an	address	of	interest,	we	

insert	 it	 into	 the	 bloom	 filter.	We	 do	 this	 by	
first	hashing	the	address	thus:	

	
ℎ𝑎𝑠ℎ = 𝑠ℎ𝑎3(𝑎𝑑𝑑𝑟𝑒𝑠𝑠)	

	
We	 then	 apply,	 in	 turn,	 each	 of	 the	𝑘	

selection	 functions	 which	 extract	 the	 lower	
11	 bits	 of	 	𝑖/A 	through	(𝑖 + 1)/A 	double-byte	
in	hash,	thereby	identifying	the	bits	that	need	
to	be	twiddled	in	the	currently	building	filter.	

	
	𝑏𝑖𝑡_𝑖𝑛𝑑𝑒𝑥# = 𝑏𝑦𝑡𝑒#(ℎ𝑎𝑠ℎ)	%	2048	
	
The	 algorithm,	 which	 stores	 a	 minimum	

number	 of	 bloom	 filters	 with	 a	 maximum	
effectiveness	 as	 determined	 by	 the	
parameterized	value	of	𝑝𝑐𝑡LMN 	(for	which	we	
use	an	experimentally	chosen	value	of	4.8%.)	
is	 presented	 in	 Table	 1,	 and	 has	 been	
modified	for	clarity.	

Results 

In	 the	 following	 section,	 we	 present	 four	
measures	 of	 effectiveness	 for	 each	 of	 the	
three	 methods	 of	 searching	 for	 transactions	
of	interest.	These	methods	are	(1)	a	straight-
forward	 traversal	 of	 each	 transaction’s	 data,	
at	each	block,	naively	looking	for	transactions	
of	 interest;	 (2)	 a	 search	using	 enhanced,	 but	
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non-adaptive,	 bloom	 filters,	 and	 (3)	a	 search	
using	adaptive,	enhanced	bloom	filters.		
Table	1	

	
For	 each	 of	 the	 three	 methods,	 we’ve	

presented	 the	 storage	 requirements	
necessary	 to	 store	 the	 bloom	 filters.		
Following	 that	 we’ve	 presented	 (A)	 the	
average	 𝑝𝑐𝑡/0#11231 	in	 groups	 of	 10,000	
blocks	 as	 well	 as	 charts	 representing	
𝑝𝑐𝑡/0#11231 	per	 block	 across	 the	 4.0	 million	
blocks,	 (B)	 performance	 timing	 for	 two	
different	 collections	 of	 addresses	 for	 each	 of	
the	three	methods,	and	(C)	the	percentage	of	
false	positive	results	from	the	bloom	filters.	

The	 performance	 measurements	 are	
shown	 under	 two	 scenarios.	 First,	 using	 a	
highly-active	 and	 long-lived	 smart	 contract	
system	called	singularDTV,	and	second,	using	
a	 randomly	 selected	 list	 of	 non-smart	
contract	addresses.	
 
Storage	Requirements	
	
The	 binary	 blocks	 stored	 in	 the	

QuickBlocks™	 binary	 cache	 contain	 bloom	
filters	at	each	transaction	that	emitted	one	or	
more	 log	 entry.	 These	 bloom	 filters	 are	

“rolled	up”	to	the	block	level	where	the	node	
uses	them	to	filter	for	pub/sub	listeners.	
For	our	purposes,	 these	 “node-generated”	

bloom	filters	are	inadequate	for	two	reasons:	
(1)	they	store	only	addresses	involved	in	the	
generation	 of	 log	 entries,	 and	 (2)	 they	 store	
event	 “topics”	 which	 do	 not	 help	 us	 in	
identifying	addresses	of	interest.	
Because	we	are,	in	effect,	re-creating	these	

node-generated	 bloom	 filters	 and	 enhancing	
them	 by	 including	 addresses	 of	 interest,	 we	
remove	 the	 native	 blooms	 from	 our	 binary	
cache.	This	significantly	lessens	the	amount	of	
data	we	need	to	store	in	our	cache,	as	well	as	
improves	 the	 overall	 performance	 of	 the	
system	due	to	the	less	amount	of	time	it	takes	
to	read	each,	now	smaller,	binary	block.	This	
consideration	 is	 reflected	 below.	 We	
generated	 the	 following	 data	 in	 late	 July	 of	
2017	 and	 chose	 to	 stop	 our	 analysis	 at	
4,000,000	blocks.	
	
Table	2	-	Number	of	Blooms	

Method	
#	of	

Blocks	
Bloom	
Files	

Node-generated	bloom	 4.0	mil	 11,481,569	
Enhanced	non-adaptive	bloom*	 4.0	mil	 768,462	
Enhanced	adaptive	bloom	 4.0	mil	 446,192	
*	five	blocks	per	bloom	 	 	
	
For	each	of	 the	 three	methods,	we	visited	

four	million	blocks.	 “Bloom	Files”	 represents	
the	number	of	separate	 files	needed	to	store	
the	bloom	filters	under	each	scenario.	
Because	 the	 node-generated	 blooms	 are	

stored	internally	as	cached	binary	data,	we’ve	
represented	 the	 number	 of	 blocks	 and	
transactions	that	have	non-zero	bloom	filters	
under	the	node-generated	row.	
The	 enhanced	 non-adaptive	 bloom	 filter	

method	 stores	 a	 bloom	 filter	 for	 every	 five	
blocks	 regardless	 of	 the	 activity	 level	 of	 the	
blocks,	 therefore	 one	 would	 expect	 to	 store	
approximately	 800,000	 files.	 Because	 many	
blocks	 are	 empty,	 there	 are	 slightly	 less	
blooms	than	expected.	
The	 number	 of	 bloom	 files	 stored	 under	

the	 adaptive	 enhanced	method	 is	nearly	half	
of	 that	 for	 the	 non-adaptive	method	 as	 is	 to	
be	 expected.	 This	 reflects	 the	 fact	 that	 the	

	
“Build Adaptive Bloom Filters” 
 
  bloomcurrent = 0 
  for each block, b, in the chain: 
    for each tx, t, in block b: 
      let l = addresses of interest 
         found in t (as above) 
 
    for each address, a, in list l: 
       bloomcandidate = to_bloom(a) 
       bloomcurrent |= bloomcandidate 
 
    if (pcttwiddled >= pctmax): 
      write bloomcurrent to disc 
        at blocknumber 
      bloomcurrent = 0 
  end for 
 
  if bloomcurrent ≠ 0 
    write bloomcurrent to disc 
      at blocknumber 
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adaptive	 method	 more	 fully	 utilizes	 each	
bloom.	
Below	 we	 present	 the	 bytes	 required	 to	

store	 the	 above-mentioned	 number	 of	 files.	
As	 can	 be	 seen	 from	 the	 table	 below,	 the	
storage	 requirement	 needed	 to	 store	
enhanced	bloom	filters	decreased	nearly	50%	
over	the	node-generated	method	(which	were	
inadequate	for	our	purposes	anyway).	
The	 enhanced	 adaptive	 bloom	 filter	

method	 shows	another	nearly	41%	decrease	
in	 data	 storage	 requirement	 over	 the	 non-
adaptive	 method	 for	 a	 total	 decrease	 in	
storage	 of	 70%	 over	 the	 node-generated	
method.	
	
Table	3	–	Bytes	Required	to	Store	Blooms	

Method	
Bytes	
Total	

Node-generated		 406,355,661	
Non-adaptive	enhanced	 206,587,456	
Adaptive	enhanced	 121,364,224	
	
We	 next	 consider	 the	 fluctuation	 of	 the	

𝑝𝑐𝑡/0#11231 value	 both	 as	 an	 overall	
percentage	 of	 all	 blooms	 and	 on	 a	per-block	
basis.	

	
Variation	in	𝒑𝒄𝒕𝒕𝒘𝒊𝒅𝒅𝒍𝒆𝒅	

	
Besides	 lowering	 storage	 requirements,	

one	of	the	main	motivations	of	the	Enhanced	
Adaptive	Bloom	Filter	method	was	 to	ensure	
a	 more	 consistent	 and	 lower	 false	 positive	
rate	per	filter	than	the	other	methods.	
Using	the	non-adaptive	method	(where	we	

store	exactly	 five	blocks	per	bloom)	many	of	
the	 blooms	 were	 highly	 under-utilized.	 For	
example,	 all	 of	 the	 first	 46,146	 blocks	 were	
empty.	 Notwithstanding	 this	 fact,	 the	 non-
adaptive	 method	 stored	 9,228	 bloom	 filters	
for	those	blocks.	
On	the	other	hand,	if	a	series	of	five	blocks	

each	 contained	 100s	 of	 transactions,	 each	
with	potentially	100s	of	internal	transactions	
(as	 happened	 during	 the	 cleanup	 period	
pursuant	 to	 the	 spurious	 dragon	 hard	 fork)	
the	 bloom	 filter	 was	 overwhelmed.	 This	
resulted	 in	 false	 positives	 reports	 for	 every	
address	checked.	

The	 following	 table	 presents	 the	 average	
percentage	of	bits	 twiddled	 for	each	method.	
Following	 that,	 we	 present	 the	 same	 data	
broken	into	groups	of	250,000	blocks	so	as	to	
reveal	 the	 effect	 of	 increased	 blockchain	
usage	over	time.	
	

Table	4	-	Percent	of	Bits	Twiddled	

Blocks		
Node	

Generated	
Enhanced	

Non	Adaptive	
Enhanced	
Adaptive	

0	to	4,000,000	 5.70%	 4.20%	 7.99%	
	
Next,	we	present	the	same	data	separated	

by	 groups	 of	 250,000	 blocks	 as	 we	 wish	 to	
analyze	 the	 effect	 of	 growing	network	 usage	
on	our	work.	
	

Table	5	-	Percent	of	Bits	Twiddled	per	250,000	

Blocks		
Node	

Generated	
Enhanced	

Non	Adaptive	
Enhanced	
Adaptive	

to	250,000	 2.89%	 0.57%	 5.92%	
to	500,000	 3.77%	 0.74%	 5.71%	
to	750,000	 4.12%	 1.00%	 5.46%	

to	1,000,000	 4.21%	 1.69%	 5.48%	
to	1,250,000	 4.61%	 2.34%	 5.92%	
to	1,500,000	 4.38%	 2.81%	 6.09%	
to	1,750,000	 5.14%	 3.45%	 6.36%	
to	2,000,000	 5.04%	 3.63%	 6.15%	
to	2,250,000	 5.19%	 3.10%	 6.37%	
to	2,500,000	 5.92%	 2.95%	 5.92%	
to	2,750,000	 5.41%	 2.96%	 6.29%	
to	3,000,000	 5.42%	 2.97%	 6.04%	
to	3,250,000	 5.66%	 3.70%	 6.28%	
to	3,500,000	 5.80%	 5.61%	 6.74%	
to	3,750,000	 6.11%	 11.49%	 7.68%	
to	4,000,000	 6.19%	 16.84%	 8.43%	
	
The	 remainder	 of	 our	 analysis	 is	

presented	in	the	appendices.	

Conclusion 

A	 common	 experience	 when	 one	 first	
enters	 the	 blockchain	 space	 is	 astonishment	
at	the	beautiful	idea	of	a	shared	global	ledger.	
Many	 people’s	 first	 reaction,	 as	was	 ours,	 is,	
“Wow.	I	can	finally	figure	out	what’s	going	on	
with	my	money.”	

An	 enthusiastic	 new	 entrant	 into	 the	
space	may	believe	 the	claims	 that	 the	data	 is	
accessible	to	everyone.	But,	what	one	quickly	
realizes	once	one	starts	the	process	of	looking	
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at	the	data,	is	that	while	the	blockchain	data	is	
stored	 perfectly	 for	a	blockchain,	 it	 is	 stored	
poorly	for	accounting	and	auditing	uses.	

This	 is	due	 to	a	complete	 lack	of	a	node-
generated	 per-account	 index.	 QuickBlocks™	
attempts	 to	 alleviate	 this	 discrepancy	
between	what	 a	 new	 user	might	 expect	 and	
what	one	 actually	 finds	 the	deeper	one	digs.	
We	 attempt	 to	 do	 this	while	 remaining	 fully	
decentralized.	Optimizations	such	 as	 the	one	
presented	in	this	paper	help	us	do	that.	

We	 are	 building	 fast,	 accurate,	 per-
account	 delivery	 of	 lists	 of	 transactions	 in	 a	
decentralized	 system.	 Stay	 aware	 of	 our	
progress	at	http://quickblocks.io	⊡	
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