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If	 one	 wishes	 to	 acquire	 a	 list	 of	 transactions	 per	 account	 (or	 series	 of	

accounts)	from	a	blockchain	in	the	hope	of	producing	a	full	accounting	for	

those	 accounts,	 there	 is	 no	 independent,	 decentralized	 method	 to	 verify	

that	the	list	of	transactions	retrieved	is	correct	and	all	inclusive.	Nor	has	it	

been	possible,	previously,	to	assure	that	the	account	balances,	as	reported	

by	 state	 retrieval	 functionality	 of	 the	 blockchain	 software,	 are	 in	

agreement	with	the	balances	implicitly	represented	by	lists	of	transactions	

stored	in	the	blocks.	Nor	has	it	previously	been	practical	to	acquire	such	a	

list	of	transactions	in	a	timely	manner.	Keywords:	blockchain,	Ethereum,	
data	analytics,	blockchain	auditing,	blockchain	accounting	
	
	
	

Introduction	

Blockchains	 store	 lists	 of	

programmatically-validated	 transactions	 in	

cryptographically-linked	 blocks.	 Most	 users	

presume	 that	 the	 list	 of	 transactions,	 which	

represent	 incoming	 and	 outgoing	 value	

transfers	 or	 access	 to	 a	 smart	 contract,	

accurately	represents	the	account	balances	as	

maintained	by	the	system.	

Each	 block,	 which	 is	 appended	 to	 the	

blockchain	 depending	 on	 configuration,	

contains	anywhere	 from	zero	 to	hundreds	of	

transactions.	 Many	 transactions	 represent	

transfers	of	value	to	and	from	more	than	one	

account.	 These	 transactions	 are	 appended	

and	 maintained	 in	 the	 blockchain	 in	 time	

order.	

While	 some	 blockchains,	 such	 as	 the	

Ethereum	 chain,	 store	 per-account	 account	

balances	 directly,	 generally	 speaking	 the	

account	 balances	 in	 a	 blockchain	 are	

implicitly	 built	 from	 its	 list	 of	 transactions.	

The	 cryptographic	 nature	 of	 the	 hash-based	

linking	 of	 each	 block	 to	 its	 parent,	 and	 each	

account’s	 balance	 to	 the	balances	of	 those	 in	

parent	blocks,	may	 lead	one	to	conclude	that	

the	two	sources	of	information	concerning	an	

account’s	balance	are	always	in	agreement.	

While	 we	 at	 QuickBlocks™	 believe	 with	

very	 high	 certainty	 that	 blockchain	 balances	

and	 list	of	 transactions	are	 identical,	we	also	

recognize	 a	 tickling	 thought	 in	 back	 of	 our	

minds	that	 insists	on	saying,	 “Yeah,	but	what	

if	they’re	not?”	

Below	 we	 detail	 our	 method	 for	

accomplishing	 per-block	 accounting	 and	

reconciliation	for	a	given	account	(or	series	of	

accounts)	 for	any	blockchain.	We	do	 this	off-

chain,	 which	 means	 we	 rely	 as	 little	 as	

possible	 on	 the	 blockchain	 itself.	 This	 does	

not	 entirely	 eliminate	 the	 tickling	 thought,	

but	it	does	scratch	it	a	little	bit.	

Why	the	Problem	is	Difficult	

In	 many	 programmable	 blockchains,	

including	the	Ethereum	blockchain,	there	are	

two	 different	 modes	 of	 exchanging	 value	 or	

messages	between	accounts.	

In	the	following,	we	will	call	the	first	mode	

a	 ‘regular’	 or	 ‘external’	 transaction.	 External	
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transactions,	 once	 processed	 by	 the	 system,	

appear	directly	in	the	list	of	transactions	that	

constitute	 a	 block.	 All	 external	 transactions,	

once	 they	 are	mined,	 even	 those	 that	 end	 in	

failure	 or	 transfer	 zero	 value,	 are	 stored	 in	

the	blockchain.	

The	 second	 mode	 of	 exchanging	 value	 or	

messages	 between	 accounts	 is	 called	 an	

‘internal	 transaction’	 or	 ‘contract	 message	

call.’	 This	 type	 of	 transaction	 is	 initiated	

internally	 to	 the	 system	 as	 the	 result	 of	 an	

external	 invocation	 of	 a	 smart	 contract.	

Internal	 transactions	or	message	calls	do	not	

appear	 as	 separate	 transactions	 listed	

directly	 in	 a	 block.	 Instead	 they	 are	

represented	 in	 the	 trace	 of	 the	 initiating	

external	transaction.	

From	 the	 perspective	 of	 the	 technologist	

developing	the	blockchain,	these	two	types	of	

transactions	 are	 different	 and	 necessarily	

must	be	recorded	separately	(and	indeed	are	

recorded	separately	in	the	blockchain).	

From	 the	 perspective	 of	 an	 accountant,	

auditor,	 a	 regulator,	 or	 even	 a	 regular	 end	

user,	who	is	simply	looking	for	all	debits	and	

credits	 on	 his/her	 accounts,	 these	 two	 types	

of	 transactions	 are—and	 very	 much	 should	

be—indistinguishable.	

It	 is	 this	 dichotomy	between	 the	differing	

views	 of	 internal	 vs.	 external	 transactions	

that	our	solution,	QuickBlocks™,	rectifies.	

One	of	 the	outcomes	of	 the	present	paper	

is	to	better	clarify	these	two	differing	views	of	

“transactions”	 on	 a	 blockchain.	We	will	 refer	

to	the	technologist’s	view	of	transactions	(i.e.	

internal	 vs.	 external)	 as	 “blockchain	

transactions.”	We	will	refer	to	an	accountant’s	

view	 of	 a	 transaction	 as	 “accounting	

transactions.”	

The	 methods	 and	 techniques	 described	

below	 accomplish	 the	 task	 of	 translating	

blockchain-centric	 internal	 and	 external	

transactions	 into	 regular	 accounting	 or	

auditing	transactions.	

It	is	important	to	note	that	completing	this	

“translation	 task”	may	 introduce	 a	 source	 of	

errors	 on	 its	 own.	 At	 the	 same	 time,	 it	 is	

important	 to	 recognize	 that	 the	 blockchain	

itself	may	contain	errors.	A	further	method	is	

therefore	 described	 that	 verifies	 the	

blockchain’s	 accounting	 both	 implicitly	

through	 its	 list	 of	 transactions	 and	 explicit	

through	its	reported	account	balances.	

This	 additional	 verification	 is	

accomplished	 while	 at	 the	 same	 time	

verifying	that	QuickBlocks™	own	acquired	list	

of	 transactions	 for	 an	 account	 or	 series	 of	

accounts	is	complete	and	accurate.	

Background	

Before	 we	 begin	 our	 discussion	 of	 our	

processes,	 we	 describe	 the	 data	 structures	

that	support	our	work.	We	describe	a	stylized	

view	 of	 the	 data	 structures	 in	 current	

blockchain	 implementations.	 We	 then	

describe	 additional	 off-chain	 data	 and	

modifications	we’ve	made	to	these	structures	

that	 enable	our	accumulation	of	 transactions	

per	account	in	an	efficient	manner.	

	
Data	Structures	
	

Addressing	 no	 specific	 blockchain	 in	

particular,	 below	 we	 present	 a	 sample	

representation	 of	 the	 data	 stored	 in	 a	

programmable	blockchain.	

Note	 that	 we’ve	 removed	 many	 of	 the	

actual	 data	 as	 these	 removed	 fields	 relate	 to	

issues	 of	 no	 interest	 to	 our	 purposes.	 For	

example,	 we’ve	 removed	 many	 of	 the	

cryptographic	hashing	information	as	well	as	

information	 relating	 to	 the	 mining	

mechanisms.	Our	system	 is	able	 retrieve	 this	

information	 if	needed,	however,	 in	pursuit	of	

clarity,	 this	 unrelated	 information	 has	 been	

removed.	

	

CBlock	Data	Structure	
	

The	primary	data	structure	of	 the	system,	

obviously,	 is	 the	 block.	 A	 representative	

description	of	which	is	presented	in	Appendix	

A-1.	

Each	 of	 the	 data	 fields	 mentioned	 in	 the	

appendix	 is	 retrieved	 for	 each	 block	 directly	
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from	 a	 running	 blockchain	 node	 using	 the	

RPC	interface.	

	

CTransaction	Data	Structure	
	

The	 transactions	 included	 in	 a	 block’s	

transactions	 list	 are	 initiated	 by	 external	
accounts.	 In	 this	 sense,	 external	 transactions	

come	from	“outside”	of	the	blockchain.	

Contra-wise,	 internal	 transactions	 are	

initiated	by	smart	contracts	from	“inside”	the	

blockchain.	

It	 is	 this	 distinction	 between	 transactions	

initiated	 by	 external	 accounts	 and	 smart-

contract	 accounts	 that	 is	 of	 importance	 in	

distinguishing	 external	 from	 internal	

transactions.	 Only	 external	 transactions	 are	

included	in	a	block’s	transactions	list.	
The	 transaction	 data	 structure	 is	 detailed	

in	Appendix	A-2.	

	

CReceipt	Data	Structure	
	

After	 processing	 a	 transaction,	 the	

blockchain	 node	 produces	 a	 receipt.	 The	

receipt	 carries	 information	 indicating	 how	

much	gas	was	consumed,	a	 list	of	any	 traces,	

and	 the	 final	 disposition	 (or	 error	 status)	 of	

the	transaction.	This	information	is	needed	to	

translate	 the	 transaction	 from	 a	 blockchain	

transaction	to	an	accounting	transaction.		

The	format	of	the	receipt	data	is	presented	

in	Appendix	A-3.	

	

CLog	Data	Structure	
	

The	 Ethereum	 virtual	 machine	 (EVM)	

provides	the	capability	to	write	arbitrary	data	

to	a	log.	This	log	may	deliver	information	to	a	

distributed	 application	 via	 an	 interface	 such	

as	 the	 RPC,	 indicating	 the	 disposition	 of	 a	

particular	transaction.	

For	 example,	 a	 “Mint”	 log	 entry	 may	 be	

used	 to	 indicate	 the	 creation	 of	 an	 ERC20	

token.	This	mechanism	is	intended	to	help	the	

application	 developer	 understand	 what’s	

happening	 in	 the	 smart	 contract,	 but	 as	 we	

shall	 see,	 the	 mechanism	 is	 limited,	 poorly	

used,	and	ultimately	inadequate	if	one	wishes	

to	build	a	full	list	of	transactions	per	account.	

The	 transaction’s	 receipt	 includes	 a,	

possibly	empty,	list	of	log	entries.	The	format	

of	a	log	entry	is	presented	in	Appendix	A-4.	

	

CTrace	Data	Structures	
	

A	final	series	of	data	structures,	traces,	are	

described	 next.	 Traces,	 because	 of	 space	

considerations,	 are	 not	 stored	 in	 the	

QuickBlocks™	binary	cache.	This	allows	us	to	

adhere	 to	our	design	principal	of	 imposing	a	

minimal	 impact	 on	 the	 target	 machine.	 The	

trace	data	carries	two	further	data	structures,	

traceAction	 and	 traceResult,	 detailed	 in	

Appendices	A-5	through	A-7.	

Having	 now	 arrived	 at	 the	 bottom	 of	 the	

data	structures,	we	remind	the	reader	that	we	

are	 deep	 inside	 the	 trace	 of	 an	 external	

transaction.	

Smart	contracts	are	able	 to	call	 into	other	

smart	contracts	ad-infinitum.	These	‘message	

calls’	 or	 ‘internal	 transactions’	 potentially	

transfer	 value	 from	 one	 account	 to	 another	

(and	in	many	case	do).	

Notice	 how	 the	 CTraceAction	 and	
CTraceResult	 data	 structures	 reflect	 the	
CTransaction	 and	 CReceipt	 data	

mentioned	 above.	 The	 trace	 data	 represents	

what	 we’ve	 called	 ‘internal	 transactions’	

above.	 It	 is	 not	 a	 surprise	 that	 the	 data	

structures	mirror	each	other.	

	

Hopefully	 it	 is	 becoming	 obvious	 to	 the	

reader	 why	 a	 technologist	 might	 not	

recognize	 a	 transaction’s	 trace	 as	 an	

‘accounting	 transaction’	 even	 though	 it	 does	

transfer	 value.	 The	 names	 and	 meanings	 of	

the	 trace	 data	 fields	 reflect	 the	 transaction	

and	receipt	data	fields,	and	it	is	this	aspect	of	

the	 data	 that	 QuickBlocks™	 takes	 advantage	

of.	

	

This,	then,	is	the	dichotomy	we	mentioned	

earlier.	 Technologists	 see	 the	 trace	 data	 and	

the	top-level	transaction	data	as	two	different	

data	 structures.	 Accountants	 and	 auditors	

view	them	as	identical	in	meaning	because	in	
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each	case	value	is	being	transferred	from	one	

account	 to	 another.	 Accountants	 need	 debits	

and	 credits	 on	 an	 account.	 Technologists	

properly	 note	 that	 the	 trace	 data	 structures	

are	not	the	same	as	a	transaction	or	receipt.	

We	have	now	completed	our	description	of	

the	existing	data	structures,	and	have	tried	to	

explain	 the	 meaning	 of	 that	 data.	 In	 the	

remainder	 of	 this	 paper,	 we	 explain	 how	

QuickBlocks™	 accomplishes	 its	 primary	 task:	

building	 a	 complete	 and	 accurate,	 per-

account	list	of	transactions	(both	internal	and	

external)	 needed	 to	 furnish	 accounting	 or	

audit	 data	 on	 a	 particular	 account	 or	 set	 of	

accounts.	

Our	Method	

	

The	first	part	of	the	QuickBlocks™	system	

is	 the	 storage	 of	 information	 needed	 to	

quickly	build	per-address	lists	of	transactions	

while	at	the	same	time	ensuring	that	doing	so	

does	 not	 overly	 burden	 the	 target	 system.	

This	 process	 is	 called	 the	 blockScrape	
application.	

	
The	blockScrape	Application	
	

For	each	block	and	for	each	transaction	in	

each	 block	 and	 for	 all	 receipts	 and	 all	 log	

entries	 in	 each	 transaction,	 blockScrape	
retrieves	 and	 stores	 that	 data	 in	 a	 highly-

optimized	 binary	 format	 for	 fast	 later	

retrieval.	 Note	 that	 QuickBlocks™	 does	 not	

attach	 traces	 to	 the	 binary	 data	 at	 this	 point	

so	 as	 to	 not	 overburden	 the	 target	machine.	

Under	 the	 monitoring	 section	 below,	 we	

explain	 how	 and	 when	 we	 are	 forced	 to	

access	trace	data.	

blockScrape	does	not	create	an	index	of	
transactions	 per	 account.	 We	 are	 building	 a	

system	 that	monitors	 only	 particular	 lists	 of	

addresses,	 therefore,	 we	 avoid	 the	

computationally	 large	 amount	 of	 work	

needed	 to	 produce	 a	 sorted	 index	 of	 all	

accounts.	

This	design	choice,	we	believe,	has	allowed	

us	 to	 maintain	 our	 “fully	 decentralized”	

stance	in	relationship	to	the	blockchain	node.	

By	 avoiding	 unnecessary	 indexing	 of	

accounts,	the	huge	majority	of	which	our	end-

users	 will	 never	 be	 interested	 in,	 and	

therefore	 will	 never	 request,	 we	 allow	 for	

faster	 operation	 at	 each	 block.	 Maintaining	

such	 a	 sorted	 index,	 even	with	 sophisticated	

database	 software,	 in	 our	 judgment,	 would	

have	a	negative	performance	impact	at	every	

block.	

Our	 avoidance	 of	 maintaining	 a	 sorted	

index	of	 accounts	 imposes	 a	negative	 impact	

on	 the	 first	 retrieval	 of	 an	 account’s	

transaction	 list,	 but	 we	 believe	 this	 is	 a	

reasonable	engineering	trade-off.	

A	 second	 consequence	 of	 the	 design	

decision	not	 to	 store	 a	 sorted	 indexed	 list	 of	

accounts	 is	 that	we	may	parallelize	the	block	

retrieval	 task	 in	 the	 future.	 Currently,	 the	

process	 is	 not	 parallelized.	 Maintaining	 a	

sorted	 list	 of	 accounts	 lessens	 the	 chance	 of	

parallelizing	 the	 process	 and	 is	 therefore	

avoided.	

Furthermore,	 because	 a	 particular	 end-

user	on	a	given	machine	will	ask	only	for	only	

a	miniscule	 percentage	 of	 accounts	 (i.e.	 only	

those	accounts	he	or	she	is	interested	in),	we	

effectively	 amortized	 the	 cost	 of	 building	

these	lists	of	transactions	over	time.	

	

Above	we	mentioned	 that	we	retrieve	 the	

data	 from	 the	 running	 node	 at	 every	 block.	

We	 do	 this	 only	 in	 the	 conceptual	 sense.	 In	

reality,	 we	 store	 only	 those	 blocks,	

transactions,	 receipts	 and	 logs	 requested	

directly	 for	 the	 particular	 accounts	 our	 end-

users	are	interested	in.	

For	 example,	 if	 our	 end	 user	 is	 only	

interested	 in	 accounts	 that	 did	 not	 transact	

prior	 to	 block	 3,000,000,	 then	 the	 earliest	

binary	 block	 in	 our	 cache	 would	 be	 block	

3,000,000.	 This,	 again,	 lessens	 the	 impact	 of	

the	 QuickBlocks™	 software	 on	 the	 target	

machine	 helping	 us	 meet	 our	 mission	 of	

running	in	a	fully	decentralized	manner.	
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Data	Storage	
	

We	 store	 the	 block	 data	 (along	 with	 its	

associated	 transactional	 data)	 in	 individual	

files,	one	per	block,	1,000	blocks	per	folder	in	

subfolders	of	one	hundred	1,000	block	groups	

this	 under	 one	 hundred	 such	 groups.	We	 do	

this	 for	 easy,	 quick	 access	 to	 a	 particular	

block	without	 having	 to	 traverse	 a	 directory	

structure.	

For	 example,	 the	 binary	 file	 for	 block	

3,872,300	 is	 stored	 in	 the	 folder	 …/scraper	

/00/38/72/003872300.bin	 where	 ‘…/’	 is	 a	

user	specified	top	of	 the	data	 folder	allowing	

for	 storage	 of	 the	 QuickBlocks™	 data	 on	 an	

external	 media	 (a	 highly-recommended	

practice).	

We	 foresee	 experimentation	 to	 explore	

storing	 of	 more	 blocks	 per	 file	 (perhaps	 as	

many	as	1,000	blocks	per	 file)	depending	on	

the	 performance	 improvements	 relative	 to	 a	

single	block	per	file	as	we	currently	do.	

While	 our	 method	 of	 storing	 the	 data	 in	

binary	 files	 is	 significantly	 faster	 (up	 to	 80	

times	 faster)	 than	 repeatedly	 retrieving	 the	

same	 data	 using	 the	 RPC,	 it	 is	 still	 not	 fast	

enough.	 For	 this	 reason,	 we’ve	 implemented	

two	 different	 methods	 of	 improving	 the	

retrieval	 of	 the	 data.	 We	 describe	 these	

methods	 below.	 We	 intend	 to	 continue	 our	

experimentation	 and	 ultimately	 choose	

whichever	method	provides	the	fastest	access	

to	 the	 data	 while	 imposing	 a	 minimal	 data	

storage	requirement	on	the	target	machine.	

	

Enhanced	Bloom	Filters	
	

We	 mentioned	 in	 the	 description	 of	 the	

block	 data	 a	 field	 called	 logsBloom	 which	
stores	both	a	 transaction’s	receipt-level	 filter	

and	a	block-level	bloom	filter.	

In	an	effort	to	improve	the	performance	of	

the	 account	 filtering	 function	 which	 is	

necessary	 to	 properly	 build	 lists	 of	

transactions,	 and	 furthermore	 as	 a	 way	 to	

avoid	having	 to	 scan	 through	 the	 entire	data	

structure	of	each	block	in	order	to	decide	if	a	

block	contains	transactions	of	 interest,	we’ve	

improved	 upon	 (i.e.,	 enhanced)	 the	 node-

generated	 block-level	 bloom	 filters	 by	

inserting	 the	 addresses	 noted	 below	 as	

“addresses	of	interest”	into	each	filter.	We	call	

this	 improved	method	 of	 the	 building	 bloom	

filters	“Enhanced	Bloom	Filters.”	

The	 blockchain	 node	 stores	 the	 following	

addresses	into	a	transaction’s	logsBloom:	
	

Addresses	stored	in	bloom	filters	

	 1)	The	initiating	address	of	the	log	entry	

	 2)	Indexed	log	parameters	(i.e.	topics)	that	
happen	to	be	account	addresses	

	 3)	Addresses	involved	in	internal	transactions1	

	

In	 other	 words,	 only	 addresses	 involved	

in	the	generation	of	the	log	entries	or	internal	

calls	 are	 included.	 To	 this,	 we	 add	 the	

following	 addresses	 found	 elsewhere	 in	 a	

transaction:	

	

Addresses	in	Enhanced	Bloom	Filters	

	 The	to	field	in	the	CTransaction	

	 The	from	field	in	the	CTransaction	

	 contractAddress	in	the	CReceipt	if	
present	

	 To	addresses	found	in	CTraceAction	data	

	 From	addresses	found	in	CTraceAction	data	

	

The	 node-generated	 bloom	 filters	 are	

inadequate	 for	 our	 purposes	 as	 they	 do	 not	

contain	all	 address	 involved	 in	a	 transaction.	

(Only	 those	 addresses	 that	were	 involved	 in	

generating	logs	are	included.)	

For	this	reason,	we	do	not	store	the	node-

generated	 bloom	 filters	 in	 our	 binary	 cache,	

instead	 we	 store	 Enhanced	 Bloom	 Filters	 at	

the	block	 level	which	 include	all	 transactions	

of	interest.	

Identically	 to	 blocks,	 Enhanced	 Bloom	

Filters	 are	 stored	 in	 folders	 of	 1,000	 blooms	

under	 two	 layers	 of	 one	 hundred	 per	 bloom	

folders.	We	 therefore	are	able	 to	 remove	 the	

																																								 																					
1	Currently,	this	is	only	true	for	the	Parity	

Ethereum	node.	We	hope	in	the	future,	it	will	be	

true	for	all	nodes	on	all	blockchains.	
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less-informative	 blooms	 stored	 in	 the	 binary	

block	data	which	greatly	reduces	the	amount	

of	data	stored	in	our	cache.		

Subsequently,	we	use	the	Enhanced	Bloom	

Filters	to	determine	if	a	block	is	of	interest	for	

a	 particular	 account	 or	 set	 of	 accounts.	 This	

method	is	fully	explored	in	[3].	

	

Per-Block	Lists	of	Involved	Accounts	
	

An	 alternative	 method	 to	 the	 one	 just	

mentioned	 is	 to	 collect,	 at	 each	 block,	 a	

straight	 list	 of	 all	 accounts	 involved	 in	 that	

block.	This	method	is	similar	to	the	Enhanced	

Bloom	 Filter	 method	 mentioned	 above,	

however,	 instead	of	 storing	bloom	 filters	per	

block,	 we	 store	 the	 entire	 (sorted)	 list	 of	

addresses	 found	in	each	block.	Note	that	 this	

does	 not	 mean	 that	 we	 store	 a	 sorted	 and	

fully-indexed	list	of	all	accounts	for	the	entire	

blockchain.	

This	 method	 is	 a	 compromise	 between	 a	

fully	 sorted	 index	 of	 addresses,	 which	 we	

believe	places	too	high	a	burden	on	the	target	

machine	 and	 also	 infringes	 on	 the	 ability	 to	

process	 blocks	 in	 parallel,	 and	 a	 method	 by	

which	 to	 acquire	 quickly-accessed	 lists	 of	

accounts	 involved	 in	 each	 block.	 By	 storing	

lists	 of	 addresses	 involved	 in	 each	 block,	we	

retain	the	ability	to	parallelize	the	process.	

	

Comparison	of	Storage	Methods	
	

The	 difference	 between	 the	 Enhanced	

Bloom	Filter	method	mentioned	above	 is	 the	

current	 method	 is	 that	 whereas	 under	 the	

first	 method	 the	 actual	 list	 of	 accounts	 per	

block	 is	 not	 determined	 until	 later,	 the	

current	method	does	 fully	 determine	 the	 list	

of	 accounts	 per	 block.	 In	 either	 case,	 we	 do	

not	 store	 the	 full	 block	 until	 the	 end-user	

explicitly	asks	for	that	data.	

Under	the	Enhanced	Bloom	Filter	method,	

the	 addresses	 involved	 in	 a	 transaction	 are	

compressed	 into	 a	 small	 bit-array	 that	

represents	those	addresses.	A	bloom	filter,	as	

described	 in	 [5],	 never	 reports	 a	 false	

negative,	which	means	 one	 need	 not,	 in	 that	

case,	 process	 the	 block	 to	 determine	 if	 there	

are	transactions	of	interest.	If	the	bloom	filter	

reports	 “not	 present,”	 then	 the	 address	 was	

definitely	 not	 involved	 in	 that	 block.	 If	 the	

bloom	 filter	 reports	 “yes,”	 it	means	 “maybe.”	

In	 this	 case,	 the	 account	 requires	 further	

processing.	

In	 the	 second	 method	 of	 listing	 each	

address	 per	 block,	 we’ve	 eliminated	 both	

false	positives	and	 false	negatives	at	 the	cost	

of	 having	 to	 search	 sorted	 lists.	 As	 is	

described	 in	 the	 monitoring	 section	 below,	

building	 list	 of	 transactions	 involving	 a	

particular	address	 is	 then	simply	a	matter	of	

traversing	 the	 per-block	 lists	 of	 accounts	 to	

find	blocks	of	interest.		

	

We	 delay	 until	 the	 account	 monitoring	

step	 to	 further	 detail	 where	 in	 the	 block	 an	

account	 is	 involved.	 For	 example,	 we	 do	 not	

store	 the	 transactionIndex	 an	 account	 was	
involved	in	at	this	stage.	Furthermore,	we	do	

not	store	which	traces	(if	any)	were	involved.	

As	 we	 will	 see	 below,	 an	 implicit	 three-

part	 numbering	 scheme,	 which	 uniquely	

identifies	 an	 “accounting	 transaction”	 begins	

to	 emerge.	 In	 order	 to	 identify	 accounting	

transactions,	 we	 need	 store	 only	 the	

blockNumber,	transactionIndex,	and	traceID	of	
a	 transaction.	 We	 refer	 to	 these	 tuples	 as	 a	

per-account	caches	below.		

	

The	 above	 discussion	 relates	 to	 the	

blockScrape	 portion	 on	 the	QuickBlocks™	
system.	blockScrape	prepares	the	data	for	
further	 processing.	 It	 does	 not	 fully	 answer	

the	 question	 of	 a	 per	 address	 index	 for	

particular	 accounts.	 Instead	 it	 simply	

prepares	 the	way	 for	 the	monitoring	portion	

of	 the	 system	 to	 ascertain	 particular	

transaction	lists.		

In	 this	way,	we	 are	 able	 to	 keep	 the	 data	

storage	 requirements	 of	 the	 system	 at	 a	

minimum	while	at	the	same	time	keeping	the	

per-block	processing	time	at	a	minimum.		

We	 now	 move	 on	 to	 a	 discussion	 of	

account	monitoring	applications.	
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The	Account	Monitoring	Applications	
	

Given	the	existence	of	the	prepared	data	as	

described	 above,	 the	 next	 task	 is	 to	

accumulate	 full	 and	 accurate	 lists	 of	

transactions	 per	 requested	 address.	

Following	this	we	are	in	a	position	to	provide	

an	 accounting	 at	 the	 end	 of	 every	 block	 for	

one	or	more	inter-related	addresses.	

In	 the	 following	 discussion,	 we	 are	

interested	 in	 two	 sets	 of	 two	 different	 data	

entities.	The	two	data	entities	are	the	account	

balances	 as	 represented	 by	 the	 list	 of	

transactions	 on	 a	 particular	 account	 and	 the	

separate	 (but	 related)	 account	 balances	

stored	by	the	node.	The	two	sets	are	(1)	these	

values	 as	 stored	 by	 the	 node,	 and	 (2)	 these	

values	re-calculated	by	QuickBlocks™.	

There	 are,	 furthermore,	 two	 competing	

motivations	for	doing	this.	

The	 first	 motivation	 for	 building	 two	

different	sets	of	 two	different	versions	of	 the	

data	 has	 QuickBlocks™	 searching	 for,	 and	

(hopefully)	 verifying	 the	 absence	 of,	 bugs	 or	

miscalculations	 in	 the	 blockchain	 accounting	

itself.	

While	we	feel	confident	that	the	chance	of	

error	 in	 the	 blockchain	 accounting	 is	

astronomically	small,	we	do	not	 feel	quite	so	

confident	 in	 the	 accounting	 of	 application-

level	 code	 for	 the	 assets	 built	 on	 top	 of	 the	

blockchain	such	as	ERC20	tokens.	

One	 need	 only	 consider	 “The	 Great	 DAO	

Debacle	 of	 2016™”	 to	 recognize	 the	 truth	 of	

this	last	statement.	

	

In	 the	 summer	 of	 2016,	 a	 smart	 contract	

called	 “The	 DAO”	was	 hacked	 and	 had	more	

than	$50,000,000	US	stolen.	

While	a	smart	contract	monitoring	system	

such	 as	 QuickBlocks™	 could	 never	 have	

prevented	 such	 a	 hack,	 it	 could	 have	

identified	the	hack	many	hours	prior	to	when	

it	was	first	identified.	Instead	of	a	young	man	

on	 a	 commuter	 train	 posting	 a	 Reddit	 post	

saying,	 “I	 think	 the	 DAO	 is	 being	 drained…”	

[and	 it	 has	 been	 being	 drained,	 once	 every	

fourteen	seconds,	for	more	than	six	hours],”	A	

QuickBlocks™	monitoring	 system	might	have	

allowed	him	 to	 say,	 “There	was	 an	 attack	on	

the	DAO	14	seconds	ago—someone	should	do	

something.”	

With	 foreknowledge	 of	 the	 existence	 of	 a	

monitoring	 system,	 developers	 can	 make	

design	 decisions	 purposefully	 intended	 to	

insert	 messages	 that	 may	 have	 helped	 to	

identify	potential	trouble.	

As	an	example	of	this	latter	point,	consider	

this	pseudo-code	from	a	simple	ERC20	token:	

	
 
contract Token { 

event Sending (address to, uint256 amt); 
event Sent (address to, uint256 amt); 
function Token () {} 
… 
function Transfer (address t, uint amt) { 
  // to protect send and process changes 
  … 
  // event notes the send started 
  Sending (to, amt); 
  if (msg.send.transfer(to, amt)) { 
  // event notes the send completed 
  Sent (to, amt); 

     return; 
    } 
    throw; 
 } 
} 

 

At	 first	 glance,	 the	 above	 code	 seems	

redundant	 because	 if	 the	 throw	 after	 the	
msg.send	fails,	no	Sent	 log	will	be	written.	
Why	 would	 one	 need	 to	 signal	 both	 the	

beginning	 of	 a	 Transfer	 and	 the	 end	 of	 a	

Transfer?	Wouldn’t	the	existence	of	the	Sent	
log	 indicate	 success	 and	 the	 lack	 of	 a	 Sent 
log	indicate	failure?	

The	answer	to	this	question	is	revealed	in	

the	 easy	 to	 understand	 stream	of	 log	 entries	

generated	 by	 the	 above	 pattern.	 There	 are	

two	cases	to	consider.	

In	the	first	case	the	to	account	 is	either	a	
non-malicious	 smart	 contract	 or	 regular	

account.	 In	this	highly-likely	case,	 the	stream	

of	transactions	and	events	look	like	this:	

	
transaction: 
  transfer { from: 0xabcd, amount: 0x100 } 
  event à Sending (0xabcd, 0x100); 
  event à Sent (0xabcd, 0x100); 
 
transaction: 
  transfer { from: 0xabcd, amount: 0x250 } 
  event à Sending (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
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For	each	Transfer	transaction,	there	is	a	
single	 Sending	 log	 followed	 by	 a	 single	
Sent	log.	In	the	case	of	an	error,	there	would	
be	no	events.		

In	 the	 second	 scenario,	 where	 the	

receiving	 smart	 contract	 is	malicious	 (which	

was	 the	 case	 with	 The	 DAO),	 the	 stream	 of	

transactions	 and	 logs	 would	 look	 much	

different:	

	
 
transaction: 
  transfer { from: 0xabcd, amount: 0x100 } 
  event à Sending (0xabcd, 0x100); 
  event à Sending (0xabcd, 0x100); 
  event à Sending (0xabcd, 0x100); 
  event à Sending (0xabcd, 0x100); 
  event à Sending (0xabcd, 0x100); 
  event à Sending (0xabcd, 0x100); 
  // until the malicious smart contract 
  // purposefully quits so as to 
  // avoid running out of gas 
  event à Sent (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
  event à Sent (0xabcd, 0x250); 
 

	

It	 should	 be	 obvious	 that	 a	 simple,	

watchful	 monitoring	 program,	 looking	 for	 a	

pattern	of	more	than	a	single	Sending	event	
before	 its	 corresponding	 Sent	 event	 is	 a	
clear	indication	of	a	recursive	attack.		

	

Another	 example	 of	 a	 smart	 contract	

programmer	 anticipating	 the	 use	 of	 a	

monitoring	system	might	be	at	the	creation	of	

ERC20	 tokens	during	 an	 ICO.	 In	many	of	 the	

current	 implementations	 we’ve	 seen,	 the	

following	 logs	 are	 generated	 by	 the	 ERC20	

smart	contract:	

	
 
  event Mint (address account, 
              uint amount); 
 
  event Transfer (address toAccount, 
                  uint amount); 
 

	

If	 instead,	 the	 programmer	 provided	 the	

following	data	in	his/her	events,	

	

	

 
  event Mint (address account, 
              uint amount, 
              uint accountBalance); 
 
  event Transfer (address toAccount, 
                  uint amount, 
                  uint toAccountBalance, 
                  uint fromAccountBalance); 
 

	

the	 task	 of	 accounting	 for	 the	 ICO	would	 be	

made	 easier.	 Here,	 the	 smart	 contract	 is	

reporting	data	to	the	monitor	information	the	

monitor	otherwise	need	to	calculate	itself.	

The	 monitoring	 software	 may	 simply	

accept	 the	 balances	 as	 correct,	 but	 it	 could	

just	 as	 well	 duplicate	 the	 accounting	 of	 the	

smart	 contract	 thereby	 providing	 a	 second	

layer	 of	 confidence	 in	 the	 smart	 contract	

code.	

	

Moving	 on	 from	 a	 discussion	 about	 the	

reasons	 behind	 using	 a	 smart	 contract	

monitoring	 system,	 we	 now	 present	 a	

description	 of	 how	 QuickBlocks™	 monitors	

work.	The	reader	 is	reminded	that,	 in	almost	

every	 case,	 QuickBlocks™	 makes	 design	

decisions	 towards	maintaining	 a	 low-impact,	

decentralized	 stance	 on	 the	 end	 user’s	

machine.	 For	 this	 reason,	 some	 things	 may	

work	in	unexpected	ways.	

The	 reader	 is	 also	 reminded,	 again	 in	

order	 to	 maintain	 a	 decentralized	 stance,	 a	

QuickBlocks™	 monitor	 does	 not	 solve	 the	

monitoring	problem	for	every	account	on	the	

blockchain,	 but	 only	 for	 particular	 accounts	

or	collections	of	accounts.	This	design	choice	

has	 imposed	 methods	 that	 may	 not	 be	

obvious	 if	 the	 monitoring	 system	 admits	

centralization	on	large-scale	computers.	

	

Components	of	a	Decentralized	Account	
Monitoring	System	

	

A	 new	 monitor,	 which	 is	 a	 collection	 of	

software	modules	as	described	in	this	section,	

is	 built	 automatically	 for	 each	 blockchain	

address	 or	 series	 of	 blockchain	 addresses	

requested	by	an	end	user.		

An	interesting	attribute	of	a	smart	contract	

is	that	(a)	once	it	is	deployed	the	source	code	
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for	that	smart	contract	never	changes,	and	(b)	

the	 full	 interface	 for	 the	 smart	 contract	 is	

specified	in	a	single	file	called	an	Application	

Binary	 Interface	 (or	 ABI)	 file.	 This	 ABI	 file,	

which	represents	an	immutable	piece	of	code,	

also	never	changes.	

These	 two	 facts	 inform	 the	 nature	 of	 the	

monitors	 in	 two	 profound	 ways.	 First,	 since	

deployed	smart	contracts	are	 immutable,	 the	

monitor	code	may	be	immutable	as	well.	This	

eliminates	 the	 need	 for	 maintenance	 and	

minimizes	 long-term	 operational	 costs	 of	 a	

smart	 contract	 monitor.	 Once	 deployed,	 a	

smart	 contract	 behaves	 identically	 forever,	

and	so	may	its	associated	monitor.	

The	 second	 implication	of	 the	 above	 facts	

is	that	the	source	code	of	the	monitor	may	be	

generated	 automatically	 from	 the	 ABI	 file.	

This	means	that	a	QuickBlocks™	monitor	may	

be	 built	 automatically	 and	 will	 operate	

without	modification	forever.		

These	 facts	 allow	 us	 to	 automatically	

create	monitor	 systems	 requiring	 no	 further	

modification.	 Having	 said	 that,	 our	 system	

generates	C++	code.	Therefore,	customization	

per	monitor	is	possible	if	desired.		

A	 high-level	 overview	of	 the	 creation	of	 a	

QuickBlocks™	monitor	is	presented	next.	

	

	

	

	

	
	
	

grabABI	/	makeClass	
	

The	 two	 components,	 grabABI	 and	
makeClass,	 are	 described	 in	 [4].	 Their	
collective	 task	 is	 to	 produce,	 for	 each	

monitored	 collection	 of	 smart	 contracts,	 a	

C++	 class	 library	 capable	 of	 parsing	 the	data	

produced	 by	 that	 system.	 This	 process	 is	

described	in	the	referenced	paper.	

Generally,	 given	 one	 or	 more	 smart	

contract	 addresses,	 grabABI	 pulls	 the	 ABI	
file(s)	 for	 those	 address	 from	 any	 available	

source	 (for	 example	 the	 .eth	 domain	 name	

system	 or	 http://Etherscan.io—a	 centralized	

solution).	The	user	may	also	provide	 the	ABI	

file	directly	if	full	decentralization	is	desired.		

The	grabABI	process	does	two	things:	(1)	
it	makes	 canonical	 and	 then	encodes	 each	of	

the	 smart	 contract’s	 function	 and	 event	

signatures.	 It	 does	 this	 using	 a	 process	

described	 in	 the	 Ethereum	Yellow	Paper	 [1].	

After	 encoding	 the	 function	 and	 event	

signatures,	 grabABI	 generates	 a	 class	

definition	 file	 for	 each	 function	 or	 event.	

makeClass	 uses	 these	 files	 to	 generate	 off-
chain	 C++	 classes	 that	 are	 subsequently	

packaged	 into	 a	 parser	 library	 and	 linked	 to	

the	monitor.		

Note	 that	 all	 of	 the	 above	 is	 created	

automatically	 by	 the	 chifra	 application	
given	 the	 contract’s	 address	 alone.	 Further	

note	 that,	 even	 though	 the	 C++	 code	 is	

generated	 automatically,	 it	 is	 C++	 code	 and	

therefore	may	be	customized	as	the	end	user	

wishes.		

As	 is	well	 known,	 smart	 contracts	 cannot	

interact	 with	 the	 real	 world.	 We	 envision	

future	 smart	 contracts	 written	 with	 a	

QuickBlocks™	 monitor	 in	 mind	 and	 able	 to	

control	real	world	devices.	

An	 off-chain	 smart	 contract	 monitor,	

mirroring	the	behavior	of	the	on-chain	smart	

contract,	 can,	 if	 it	 encounters	 a	 particular	

function,	 initiate	 an	 interaction	 with	 an	 IoT	

device.	An	example	of	this	type	of	interaction	

might	 be	 a	 smart	 contract	 controlling	 a	 bike	

lock,	for	example.	

	

	

List	of	

addresses	

to	monitor	

ABI	file	(if	

available)	

for	each	

address	

Chifra	 Address	

Monitor	

makeClass	

grabABI	
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Chifra	
	

The	 chifra	 process	 controls	 the	 above	
described	 process	 of	 creating	 a	 monitor’s	

parser	 library	 as	 well	 as	 building	 the	

remainder	of	the	monitor.	Chifra	generates	
commands	that	kick-off	the	grabABI	process	
which	 generates	 class	 definition	 files	 that	

makeClass	 uses	 to	 build	 the	 source	 code.	
Chifra	 then	 copies	 a	 templated	 (empty)	
monitor	 that	provides	all	 the	 functionality	of	

a	monitor	as	described	in	the	next	section.	

	

Smart	Contract	Monitors	
	

A	 smart	 contract	 monitor	 is	 an	 off-chain	

piece	of	 software	 that	 “watches”	 an	on-chain	

smart	contract.	It	does	this	by	listening	to	the	

blocks	 being	 added	 to	 the	 head	 of	 the	 chain,	

identifying	 the	 transactions	 of	 interest	

(related	 to	 a	 series	 of	 addresses	 comprising	

the	system),	parsing	the	related	transactions,	

possibly	 displaying	 or	 exporting	 the	

transactions,	 potentially	 looking	 for	 specific	

anomalous	 behavior,	 and	 then	 storing	 the	

parsed	data	into	a	local	cache	for	significantly	

faster	later	retrieval.	

(We	 find	 it	 odd,	 as	 you	may,	 that	 the	 off-

chain	 monitor	 “watches”	 an	 on-chain	 smart	

contract	by	“listening”	to	the	blockchain.)	

The	first	process	(watching	the	end	of	the	

chain)	 uses	 the	 blockScrape	 application	
mentioned	 above.	 The	 monitor	 records	 the	

most-recently	visited	block	number,	asks	 the	

node	 for	 the	 newest	 block,	 and	 proceeds	 to	

pull	previously	un-processed	blocks.	

This	 process	 runs	 periodically	 as	 per	 the	

settings	of	 the	monitor.	A	 common	 setting	 is	

once	 every	 15	 seconds	 which	 ensures	 a	

relatively	 fresh	 cache	 while	 ensuring	 low-

impact	on	the	target	machine.		

The	 monitor	 writes	 its	 findings	 to	 a	

transactional	 cache	 specific	 to	 that	 smart	

contract	system.	

A	 monitor’s	 transactional	 cache	 is	 very	

simple.	 It	 consists	 of	 nothing	 more	 than	 a	

binary	 array	 of	 blockNumber	 /	

transactionIndex	 /	 traceID	 representing	 the	

encountered	transactions	of	interest.		

The	 second	 mode	 of	 operation	 for	 a	

monitor	is	that	of	displaying	the	transactions	

from	 the	 cache.	 This	 is	 accomplished	 simply	

by	 traversing	 the	 monitor’s	 binary	

transactional	 cache,	 retrieving	 the	 full	 block	

from	 the	 blockScrape	 binary	 cache,	 and	
then	 rendering	 the	 transaction	 as	 described	

in	[4,	Appendix	B].		

What	we’ve	described	is	the	accumulation	

and	 re-rendering	 of	 a	 series	 of	 transactions	

related	 to	 a	 smart	 contract	 system	 (which	

may	 include	 one	 or	 more	 accounts),	 in	 the	

remainder	 of	 this	 paper,	 we	 describe	 use	

cases	 for	 these	 per-account,	 quickly-

accessible	lists	of	transactions.		

Use	Cases	

Per-Block	Instantaneous	Reconciliation	
	

We	mentioned	earlier	that	one	of	the	goals	

of	the	QuickBlocks™	system	was	to	provide	a	

methodology	 to	 verify	 the	 accounting	 of	 the	

blockchain.	 We	 mentioned	 that	 some	

blockchains	 maintain	 two	 versions	 of	 an	

account’s	 balance:	 (1)	 the	 balances	 stored	 in	

the	state,	and	(2)	the	balances	as	represented	

implicitly	by	the	list	of	transactions.	

Because	 QuickBlocks™	 is	 able	 to	 build	 an	

accurate	 list	 of	 transactions,	 and	 thereby	

duplicate	the	blockchain’s	accounting,	we	can	

verify	that	the	list	of	transactions	does	indeed	

reflect	 to	 the	 account	 balances	 at	 the	 end	 of	

each	block.		

This	 has	 the	 following	 implication:	 If	 we	

find	that	the	QuickBlocks™	list	of	transactions	

(which	 is	 assumed	 to	 be	 full	 and	 accurate),	

does	not	agree	with	 the	blockchain	balances,	

we’ve	 likely	 identified	 an	 error	 in	 the	

QuickBlocks™	code.	If,	on	the	other	hand,	and	

upon	 further	 investigation,	 we	 discover	 that	

the	QuickBlocks™	accounting	is	correct,	we’ve	

identified	 (however	unlikely)	 an	 error	 in	 the	

blockchain	accounting.	

QuickBlocks™	 and	 the	 blockchain	 must	

agree.	
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We	 extend	 this	 idea	 further	 to	 digital	

assets,	 such	 as	 ERC20	 tokens.	 Here,	 the	

accounting	 provided	 by	 the	 blockchain	 node	

is	not	inherent	to	the	node	itself.	Instead,	the	

developer	 of	 the	 token	 contract	 has	 written	

the	accounting	system.	

Anyone	 familiar	 with	 the	 field	 is	 aware	

that	 there	 have	 been	numerous	 bugs	 and/or	

mistakes	 either	 in	 the	 security	 of	 a	 digital	

assets	or	in	the	accounting	for	a	digital	asset.	

If	 the	 smart	 contract	 implementing	 the	

asset	 contains	 an	 error,	 and	 it	 is	 being	

monitored,	there	are	opportunities	to	identify	

errors	before	they	cause	more	damage	than	is	

necessary.	 If	 the	 contract	 is	 not	 being	

monitored,	no-one	will	notice,	and	a	potential	

error	 will	 go	 unnoticed	 as	 it	 did	 with	 The	

DAO.	

While	 we	 at	 QuickBlocks™	 are	 still	

investigating	 the	effect	of	The	DAO	Hack	had	

on	The	DAO’s	 token	balances,	 it	 is	 our	 belief	

that	the	relationship	between	the	tokens	and	

the	ether	they	represented	went	out	of	kilter	

on	the	first	block	after	the	hack.	

At	the	end	of	the	first	block	after	the	hack,	

the	 ether	 in	 the	 smart	 contract	 was	 lower	

than	 it	 should	 have	 been,	 while	 the	 token	

count	was	correct.	A	per-block	reconciliation	

of	the	ratio	of	tokens	to	ether	may	have	made	

this	obvious.		

If	 one	 can	 identify	 such	 an	 imbalance	

between	 the	 token	 balance	 in	 a	 smart	

contract	 and	 the	 ether	 balance	 it	 represents,	

one	 may	 have	 an	 opportunity	 to	 forestall	 a	

larger	loss	than	would	otherwise	occur.	

	

Per	Block	Interactive	Transaction	Debugger	
	

Given	 the	 ability	 of	 QuickBlocks™	 to	

instantaneously	reconcile	each	block	with	the	

blockchain,	 we’ve	 been	 able	 to	 build	 an	

interactive	per-block	debugging	tool.	

This	 software,	 which	 is	 created	

automatically	 by	chifra,	 traverses	 through	
the	account’s	 list	of	 transactions,	doing	a	 full	

reconciliation	at	each	block.	It	comes	to	a	halt	

and	 enters	 debugging	 mode	 if	 there	 is	 a	

discrepancy	 between	 the	 expected	 balance	

(according	to	QuickBlocks™)	and	the	account	

balances	as	retrieved	from	the	node.	

As	 of	 this	 writing,	 we	 are	 able	 to	 fully	

account	 for	 the	 ether.	 We	 have	 already	

embarked	 on	 a	 similar	 functionality	 for	

accounting	for	digital	assets	such	as	tokens.		

The	 various	 functionality	 provided	 by	 the	

debugger	is	presented	in	Appendix	A-8.	

	

Decentralized	Blockchain	Explorer	
	

A	distinguishing	characteristic	of	our	work	

is	 that	 it	remains	entirely	decentralized.	This	

is	 simpatico	 with	 the	 philosophy	 behind	 the	

blockchain.	 Unlike	 many	 blockchain	

explorers,	 QuickBlocks™	 resides	 locally,	

running	 on	 the	 same	 computer	 as	 the	

blockchain	node	itself.	

In	 addition	 to	 running	 locally,	

QuickBlocks™	parses	and	delivers	the	data	in	

a	format	that	is	familiar	to	the	smart	contract	

developer.	 Instead	 of	 the	 hexadecimal,	

difficult-to-understand,	 “ugly”	 data	 from	 the	

RPC,	 QuickBlocks™	 delivers	 easily	 digested	

data	 already	 translated	 into	 the	 language	 of	

the	smart	contract.	

Due	 to	 many	 factors	 including	

optimizations	to	the	stored	data,	and	because	

QuickBlocks™	runs	locally	to	the	machine	and	

does	 not	 require	 a	 transport	 of	 data	 across	

the	Internet,	our	data	delivery	is	furthermore	

significantly	 faster	 than	 other	 methods	 of	

data	retrieval	we’ve	seen.	

	

Database	and	Test	Case	Generation	
	

We	 anticipate	 smart	 contract	 developers	

using	 our	 software	 to	 populate	 traditional	

web	2.0	databases	and	thereby	driving	much	

richer	 and	more	meaningful	web-based	 user	

interfaces	for	their	dApps.	

At	the	same	time,	the	transactional	history	

of	the	smart	contract	can	be	used	to	generate	

live-recording	test	cases	that	may	be	used	on	

a	 testing	 environment	 to	 study	 aspects	 of	 a	

smart	 contract	 system	 such	 as	 stress	 testing	

and	gas	accounting.		

Furthermore,	because	the	monitor	system	

is,	 after	 all,	 C++	 source	 code	 and	 represents	
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the	exact	functional	and	event	interface	of	the	

smart	contract	system,	it	is	conceivable	that	a	

testing	 engineer	 could	 write	 arbitrarily	

complex	 test	 data	 streams	 to	 purposefully	

attack	 or	 stress	 specific	 parts	 of	 the	 smart	

contract	system.	

	

Generation	of	Transactional	Data	for	Use	in	
Accounting	and	Auditing	Systems	

	

The	smart	contract	monitoring	system	can	

generate	 data	 to	 any	 format.	 One	 envisioned	

use	 case	 is	 to	 generate	 data	 in	 specific	

formats	 for	 use	 by	 non-technical	 users	 such	

as	 accountants	 and	 audit	 personnel.	 For	

example,	 generation	 of	 the	 transactional	

history	 of	 a	 smart	 contract	 system	 could	

easily	be	fed	into	an	accounting	package	such	

as	 QuickBooks®	 through	 its	 already	 existing	

import	format	specification.	

	

Tokenomics	
	

We	 define	 the	 field	 of	 Tokenomics	 to	 be	

the	accounting	 for	and	analysis	of	ERC20	(or	

related)	smart	contract	tokens	or	other	digital	

assets.	This	might	 involve	accounting	 for	 ICO	

crowd	 sales	 including	 analysis	 of	 lost	

opportunity	costs	due	to	oversubscription.	

In	 addition,	 for	 the	 first	 time,	we	are	able	

to	 build	 what	 would	 be	 effectively	 off-chain	

capitalization	 tables	 for	 the	 entity	 whose	

ownership	 is	 represented	 by	 the	 token.	 This	

has	not	been	possible	previously.	

	

“Bridging	Code”	for	Real	World	Interactions	
	

A	 smart	 contract	 runs	 entirely	 in	 the	

context	 of	 its	 virtual	 machine.	 In	 this	 sense,	

there	is	no	“outside	world.”	Neither	is	there	a	

way	 to	 get	 data	 into	 a	 smart	 contract	 (other	

than	an	external	transaction).	

A	 smart	 contract	 monitor,	 such	 as	 those	

provided	by	QuickBlocks™,	 is	able	 to	operate	

as	a	bridge	to	the	real	world.	While	watching	

the	smart	contract,	and	in	response	to	certain	

events	or	transactions,	a	monitor	may	initiate	

an	 off-chain	 process.	 QuickBlocks™	monitors	

allow	 smart	 contracts	 to	 interact	 with	 the	

world.	

Say,	 for	 example,	 the	 smart	 contract	

accepts	 ether	 in	 return	 for	 opening	 a	 bicycle	

lock.	 One	 could	 implement	 a	 fully	

autonomous	bike	sharing	system	with	such	a	

monitor.	 The	 smart	 contract	 controls	 the	

money,	 while	 the	 smart	 contract	 monitor	

unlocks	and	re-locks	the	bicycle.	

	

Spot	Pricing	of	Transactions	
	

With	 a	 simple	 modification	 of	 the	 data,	

QuickBooks™	 may	 price	 transactions	 in	

whatever	 currency	 is	 of	 interest	 to	 the	 end	

user.	 This	 modification	 involves	 storing	 a	

single	floating-point	number	representing	the	

then-current	 price	 of	 the	 underlying	 crypto-

currency	 at	 that	 moment.	 This	 information	

may	be	collected	using	any	available	method,	

perhaps	 by	 averaging	 multiple	 different	

pricing	data	at	each	block.	This	would	be	the	

basis	for	tax	reporting	software.	

It	would	not	be	necessary	 to	 retrieve	 and	

store	 the	 then-current	 prices	 of	 the	 various	

digital	 assets	 built	 on	 top	 of	 a	 particular	

blockchain	 (unless	 those	 assets	 are	 inter-

operable).	At	 the	 time	of	purchase,	 the	 then-

current	 value	 of	 the	 crypto-currency	 is	

representative	 of	 the	 cost-basis	 price	 of	 the	

asset.	At	the	time	of	the	sale,	the	then-current	

value	of	 the	cryptocurrency	 is	representative	

of	the	value	of	the	token.	It	is	a	fact	that	only	

the	 value	 of	 the	 underlying	 crypto-currency	

of	the	asset	matters	when	calculating	net	gain	

or	loss.	

There	 is	 an	 opportunity	 to	 provide	 a	

service	 to	 end	 users	 wherein	 all	 debits	 and	

credits	 into	 a	 particular	 token	 can	 be	

calculated,	 and	 for	 the	 first	 time,	 an	

automated	 best	 pricing	 method	 for	 the	

transfer	of	assets	can	be	calculate	to	minimize	

tax	implications.	

	

Method	for	Storing	Minimal	Data	per	User	and	
yet	Providing	Maximum	Availability	via	IPFS	

	

One	 of	 our	 potential	 use	 cases	 is	 data	

delivery,	 not	 only	 to	 smart	 contract	
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developers	 but	 also	 to	 any	 other	 user	 who	

may	be	interested	in	the	data.	

Because	 we	 wish	 to	 remain	 fully	

decentralized,	 the	 traditional	 method	 of	

sharing	 data	 (i.e.	 through	 a	 centralized	web-

based	API	service)	is	inadequate.		

We	therefore	propose	to	store	fully	parsed	

and	 improved	 data	 on	 a	 distributed	 file	

system	such	as	 IPFS.	Distributed	 file	systems	

allow	 for	 a	 minimum	 impact	 on	 a	 single	

machine	 (because	only	 the	blocks	of	 interest	

need	to	be	stored	on	the	hard	drive),	while	at	

the	 same	 time,	 the	 entire	 binary	 cache	 is	

“conceptually”	available	to	all	participants.		

It	 is	 presumed	 that	 the	 transfer	 of	 an	

already	 improved	 binary	 block	 file	 will	 be	

lower	 than	 fully	 re-processing	 the	 block	 on	

each	individual	machine.		

This	 minimal	 imposition	 of	 storage	 costs	

while	at	 the	same	time	 infinite	availability	of	

the	 data	 may	 allow	 us	 to	 provide	 a	 fully	

decentralized	data	delivery	mechanism.		

Other	Ideas	and	Closing	Remarks	

	

In	 the	 blockScrape	 application,	 we	
insure	 the	 accuracy	 of	 the	 data	we’ve	 stored	

in	 our	 own	 proprietary	 binary	 format	 by	

retrieving	 it	 into	 memory,	 rendering	 it	 to	 a	

minimal	 length	string	and	compare	 the	same	

to	the	data	retrieved	and	processed	from	the	

block.	 Any	 difference	 indicates	 an	 error.	 In	

this	way,	we	insure	accurate	data	handling.	

	

In	 the	 blockScrape	 application,	 we	
store	 only	 blocks	 with	 one	 or	 more	

transactions	in	the	binary	cache.	At	the	same	

time,	 we	 store	 an	 array	 of	 64-bit	 integers	

indicating	 the	block	numbers	of	 those	blocks	

that	contain	at	least	one	transaction.	Because	

we	 are	 writing	 transactional	 accounting	

software,	there	is	no	need	to	store	blocks	that	

contain	 no	 transactions.	 This	 lessens,	 by	

about	35%,	the	amount	of	data	stored	and	the	

time	needed	to	traverse	the	entire	blockchain.	

	

For	 the	 monitoring	 software,	 we	 initially	

store	no	binary	blocks	 in	 the	cache.	We	 later	

only	 store	 a	 block	 if	 the	 block	 contains	

transactions	 of	 interest	 to	 the	 monitor.	 This	

significantly	 lowers,	 by	 orders	 of	magnitude,	

the	 amount	 of	 binary	 data	 we	 need	 to	 store	

on	the	target	machine’s	hard	drive.	

By	further	storing	the	data	in	a	distributed	

file	system	such	as	IPFS,	we	are	able	to	lessen	

the	 amount	 of	 processing	 needed	 to	 create	

each	 binary	 block	 as,	 if	 already	 present	

somewhere	 in	 the	 distributed	 system,	 the	

block	can	be	retrieved	directly.	

	

The	chifra	 program	allows	us	 to	accept	
a	list	of	blockchain	addresses,	and	from	there	

retrieve	ABI	files,	from	which	we	generate	the	

entire	 parsing	 library	 and	 other	 parts	 of	 the	

monitor	software	from	a	template.	

	

For	the	ethPrice	application,	we	acquire	
price	data	from	multiple	sources	and	store	US	

dollar	prices	in	separate	binary	files	(for	later	

reference)	 along	 with	 an	 average	 price	

attached	at	each	block.	

	

For	 the	grabABI	 program,	 we	 reach	 out	
to	multiple	data	sources	 looking	 for	ABI	 files	

from	which	to	build	a	monitor	program.	If	an	

ABI	 file	 is	 found,	 we	 cache	 it	 locally	 and	

generate	a	list	of	canonical	function	interfaces	

and	 their	 associated	 encodings.	 This	

generates	 a	 list	 of	4-byte	 function	 signatures	

and	32-byte	event	signatures.	

When	 a	 monitor	 program	 needs	 to	

‘decode’	 a	 transaction’s	 input	 data	 field,	 we	
use	 the	 function	 signature	 to	 (a)	 determine	

which	 function	 the	 input	 represents,	 and	 (b)	
parse	 out	 the	 remaining	 data	 from	 the	 input	
and	assign	it	to	each	of	the	class’s	fields.	

	

In	 the	 monitor	 applications,	 while	

presenting	 records	 from	 a	 monitored	 set	 of	

addresses,	 the	 application	 may	 enter	 into	 a	

debugging	mode	that	allows	the	user	to	view	

the	 transaction	 in	 whole	 by	 presenting	 the	

detailed	 transaction,	 the	 detailed	 trace,	 the	

detailed	logs,	the	bloom	filter	as	it	tests	itself	

against	each	monitored	address.	
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At	 each	 block,	 the	 debugger’s	 accounting	

system	 reconciles	 to	 the	 address’s	 beginning	

balance,	the	total	value	of	inputs	and	outputs	

per	block	and	the	ending	balance.	At	 the	end	

of	each	block,	the	debugger	asks	the	node	for	

its	balances.	

If	 there	 is	 a	 discrepancy,	 the	 debugger	

enters	 into	 single	 step	 mode.	 Here	 the	 end-

user	may	 save	 a	 record	 of	 the	mismatch	 for	

later	investigation	or	simply	correct	the	error	

interactively	 and	move	 on	 to	 the	 next	 block.	

The	 debugger	 also	 is	 able	 to	 display	 each	

monitored	 address	 with	 human-readable	

names	instead	of	hexadecimal	addresses.	

	

Monitor	 applications	 operate	 on	 a	

configuration	 file	 which	 includes	 (a)	 toggle	

flags	for	turning	on	and	off	various	options	of	

the	program	and	(b)	display	specifications	for	

displaying	records	 from	the	cache.	Each	time	

the	 monitor	 runs,	 it	 first	 freshens	 its	 local	

cache	using	blockScrape	and	then	adds	to	
the	list	of	transactions	per	account.		

Since	 many	 smart	 contracts	 are	 token	

based,	QuickBlocks™	pre-generates	 two	fixed	

libraries	 called	 tokenlib	 and	 walletlib 
which	 handle	 the	 industry	 standard	 ERC20	

smart	 contact	 functions	 and	 events,	 in	

addition	 to	 the	 most	 widely	 used	 multi-sig	

wallet	 functions	 and	 events.	 If	 the	grabABI	
function	cannot	find	an	account’s	ABI	file,	the	

system	 automatically	 falls	 back	 to	 these	

standard	 libraries	 to	 process	 the	 transaction	

if	possible.		

Conclusion	

We	 believe	 there	 is	 a	missing	 component	

in	 the	 current	 blockchain	 ecosystem.	 This	 is	

not	surprising	as	the	same	person	who	wrote	

the	 first	 C++	 implementation	 of	 the	

blockchain	 also	 wrote	 the	 first	

implementation	 of	 the	 RPC	 interface	 and	

furthermore	 wrote	 the	 first	 implementation	

of	the	web3.0	JavaScript	interface.	

This	 genius	 developer	 (calling	 Dr.	 Wood	

anything	 short	 of	 a	 genius	 seems	 unwise)	

foisted	 the	 task	 of	 accumulating	 per-account	

lists	 of	 transactions	 and	 parsing	 those	

transactions	 on	 the	 wrong	 part	 of	 the	

system—dApp	developers.	

This	 missing	 piece	 of	 the	 ecosystem	 is	

exactly	 the	 piece	 that	 QuickBlocks™	

provides—that	of	a	data	translation	layer.	

Very	few	people	are	interested	in	blocks	of	

intermingled	 transactions	 for	 arbitrary	 lists	

of	 accounts.	 Most	 people,	 in	 our	 opinion,	

including	 system	 architects,	 developers,	

testers,	 bookkeepers,	 accountants,	 auditors,	

regulators,	 and	 even	 individuals	 are	

interested	 in	 particular	 transactions	 cast	

against	their	own	list	of	 interesting	accounts.	

This	 is	 what	 QuickBlocks™	 provides…fully	

parsed…with	 minimal	 impact	 on	 the	

machine…fully	decentralized…and	fast	⊡	
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Appendix	A.1	–	The	CBlock	Data	Structure	
	

CBlock	

	 Field	Name	 Description	
	 parentHash	

32-byte	hash	
A	reference	to	the	previous	block	in	the	blockchain.	This	value	is	identical	to	the	previous	block’s	
hash.	By	virtue	of	including	this	hash	in	the	current	block’s	data	prior	to	generating	the	current	
block’s	own	hash,	the	blockchain	insures	the	immutability	of	the	data.	

	 hash	
32-byte	hash	

A	cryptographic	hash	of	the	data	contained	in	the	current	block,	excluding,	of	course,	the	hash	
itself,	but	including	the	hash	of	the	parent.	

	 blockNumber	
unsigned	

The	sequentially-ordered	number	of	the	given	block	starting	from	the	‘zero’	or	‘genesis’	block,	
and	including	no	gaps	even	if	the	block	is	empty.	

	 timestamp	
unsigned	

The	epoch-based	timestamp	of	the	block.	All	transactions	in	a	given	block	are	assigned	the	same	
timestamp	as	the	block	itself.	

	 logsBloom	
bloom	

An	accumulation	of	the	logsBloom	data,	if	any,	from	the	transaction’s	receipts.	Note,	in	
QuickBlocks™,	this	blockchain	data	has	been	removed	and	replaced	with	an	Adaptive,	Enhanced	
Bloom	filter	as	described	in	[4].	

	 transactions	
array	of	CTransaction		

An	arbitrarily	long,	possibly	empty,	list	of	externally	initiated	and	consented	to	transactions	
including	those	transactions	that	may	have	ended	in	error.	
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Appendix	A.2	–	The	CTransaction	Data	Structure	
	

CTransaction	

	 Field	Name	 Description	
	 hash	

32-byte	hash	
A	cryptographic	hash	of	the	data	contained	in	this	transaction,	excluding,	of	course,	the	hash	
itself.	

	 blockHash	
32-byte	hash	

A	reference	to	the	hash	of	the	block	in	which	this	transaction	is	included.	

	 blockNumber	
unsigned	

A	reference	to	the	blockNumber	of	the	block	in	which	this	transaction	is	included.	

	 timestamp	
unsigned	

A	reference	to	the	timestamp	of	the	block.	

	 transactionIndex	
unsigned	

A	zero-based	sequential	index	of	this	transaction’s	location	in	the	block’s	transactions	array.	

	 from	
20-byte	address	

The	external	account	that	initiated	this	transaction.	Note	that	this	account,	in	current	
implementations,	pays	for	the	gas	consumed	by	the	transaction.	The	account	is	represented	by	a	
20-byte	public	address.	

	 to	
20-byte	address	

The	destination	or	receiving	address	of	the	transaction.	This	account	may	be	either	another	
external	account	or	a	smart	contract	account.	

	 value	
big	unsigned	

The	value,	denominated	in	the	blockchain’s	base	denomination,	sent	with	this	transaction.	This	
value	may	be	zero,	and	it	is	exclusive	of	gas	costs.	
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CTransaction	

	 Field	Name	 Description	
	 gasAllowed	

big	unsigned	
This	field	indicates	a	user-specified	maximum	amount	of	gas	to	be	consumed	by	the	transaction.	
This	value	is	set	prior	to	the	initiation	of	the	transaction.	If	the	amount	of	gas	consumed	by	the	
transaction	during	its	processing	is	strictly	larger	than	the	amount	specified	here,	the	transaction	
fails.	Furthermore,	if	a	transaction	fails	for	any	other	reason,	for	example,	an	incorrectly	specified	
input	value,	all	remaining	gas	is	consumed.	
The	calculated	amount	gasCost	

gasCost	=	gas	*	gasPrice	
is	needed	to	fully	account	for	a	transaction.	gasCost	is	exclusive	value	above.	gasCost	is	extracted	
from	the	sending	(i.e.,	the	from)	account	regardless	of	the	error	status	of	the	transaction.	

	 gasPrice	
big	unsigned	

When	a	transaction	is	completed	the	amount	of	gas	consumed	during	the	execution	of	the	
transaction	is	multiplied	by	gasPrice	and	the	resulting	amount	(gasCost)	is	extracted	from	the	
sending	(i.e.,	the	from)	account	and	paid	to	the	block’s	winning	miner.	

	 input	
bytes	

This	arbitrarily	long	field	may	contain	any	data	including	no	data	at	all.	The	owner	of	the	sending	
account	may,	for	example,	use	this	field	to	send	hexadecimal	encoded	messages	to	the	owner	of	
the	receiving	account.	
More	likely,	the	input	data	field	is	used	to	carry	information	necessary	to	specify	the	called	
function	of	a	smart	contract	and	its	associated	parameters	as	specified	in	the	function’s	ABI	
interface.	
The	first	four	bytes	of	this	field,	if	the	recipient	address	is	a	smart	contract	and	the	transaction	is	
a	function	call,	contain	the	signature	of	the	intended	called	function.	The	remaining	data	in	this	
field	contains	that	function’s	parameter	data.	
In	the	special	case	when	the	to	field	is	0x0,	the	input	data	field	carries	the	byte	code	of	a	compiled	
smart	contract.	The	system,	in	this	case,	attempts	to	deploy	the	smart	contract	to	the	blockchain.	
On	success,	the	location	of	the	new	smart	contract,	is	returned	in	the	transaction	receipt’s	
contractAddress	field.	
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CTransaction	

	 Field	Name	 Description	
	 isError	

bool	
This	calculated	field	is	retrieved	from	the	transaction’s	receipt	as	described	below.	

	 isInternalTx	
bool	

This	calculated	field	is	retrieved	from	the	transaction’s	trace	as	described	below.	

	 receipt	
CReceipt	

Each	transaction	is	assigned	a	receipt	which	must	be	retrieved	separately.	The	receipt	data	
structure	is	described	below.	
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Appendix	A-3	–	The	CReceipt	Data	Structure	
	

CReceipt	

	 Field	Name	 Description	
	 contractAddress	

address	
If	an	externally	generated	transaction	is	sent	to	address	0x0,	and	the	input	data	field	of	the	
transaction	must	contain	valid	byte	code,	and	in	this	case	a	new	smart	contract	is	created.	The	
address	of	that	newly	created	contract	is	returned	in	this	field	of	the	transaction’s	receipt.	

	 gasUsed	
big	unsigned	

The	total	amount	of	gas	consumed	during	the	processing	of	the	transaction	is	returned	here.	
Note,	in	the	case	of	an	in-error	calculation	and	subsequent	“throw”	from	a	smart	contract,	the	
gasUsed	field	and	the	gasAllowed	field	will	be	equal.	This	is	because	a	“throw”	consumes	all	
remaining	gas.	
The	two	values	will	be	equal	in	the	case	when	the	transaction’s	processing	would	have	consumed	
more	gas	than	was	allowed.	Many	software	implementations	interested	in	building	per-address	
lists	of	transactions	mistakenly	think	that	a	simple	test	of	gasLimit	vs.	gasUsed,	if	equal,	indicates	
an	error.	This	is	not	the	case.	
In	order	to	fully	understand	the	discussion	below,	one	must	realize	that	for	many	cases	where	
gasLimit	exactly	equals	gasUsed,	the	transaction	did	not	end	in	error.	This	is	the	case,	for	
example,	in	a	simple	value	transfer	from	one	external	account	to	another.	Many	blockchain	
wallets	send	exactly	21,000	gas	in	such	a	case	which	is	the	identical	to	the	cost	of	such	a	transfer.	
This	makes	searching	for	in-error	transactions	more	difficult.	
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CReceipt	

	 Field	Name	 Description	
	 logsBloom	

bloom	filter	
A	transaction’s	receipt	holds	an	arbitrarily	long	list	of	log	entries	(i.e.	generated	events).	Log	
entries	are	returned	in	the	receipt’s	logs	field.	
Various	fields	in	the	log	entries	represent	either	account	addresses	involved	in	the	transaction	or	
event	signatures.	Through	a	rather	simple	calculation,	three	particular	bits	of	a	4096	bit	long	
binary	array	of	bits	are	twiddled	(set	to	‘true’)	indicating	the	possible	presence	(or,	if	the	bit	is	
set	to	‘false,’	the	absence)	of	that	address	in	the	logs.	
Because	this	filter	may	report	false	positives,	it	is	not	unequivocally	true	that	a	particular	address	
was	involved	in	the	transaction.	The	logsBloom	may	be	used	to	eliminate	an	account	from	
consideration,	however.	

	 logs	
CLogEntry	array	

The	logs	list	includes	an	arbitrarily	long	list	of	event	CLogEntry	data	structures,	described	
below.	

	



Rush	-	Faster,	Richer,	Fully	Customizable	Data	from	Programmable	Blockchains	
	

	
	

©	2017	by	Great	Hill	Corporation.	This	document	contains	confidential	
and	proprietary	information.	All	rights	reserved.	

vii	

Appendix	A.4	–	The	CLog	Data	Structure	
	

CLogEntry	

	 Field	Name	 Description	
	 address	

20-byte	address	
Only	smart	contracts	may	emit	log	entries.	This	address	value	represents	the	address	of	the	
smart	contract	that	emitted	the	event	represented	by	this	log	entry.	

	 logIndex	
unsigned	

The	index	of	the	given	log	entry	in	the	list	of	logs	numbered	sequentially	starting	from	‘zero’.	

	 topics		
big	unsigned	array	

Topics	are	between	zero	and	four	32-byte	entries	representing	‘indexed’	fields	in	the	event	
signature	as	specified	in	the	source	code.	Indexing	on	these	fields	may	improve	search	
performance	while	filtering	on	these	items	as	they	are	inserted	into	the	transaction’s	logsBloom.	

	 data	
bytes	

An	arbitrarily	long	collection	of	data	(packed	to	the	nearest	32-byte	boundary)	representing	the	
non-indexed	fields	in	an	event’s	signature.	
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Appendix	A.5	–	The	CTrace	Data	Structure	
	

CTrace	

	 Field	Name	 Description	
	 blockHash	

32-byte	hash	
A	reference	to	the	blockHash	of	the	block	containing	this	trace.	

	 blockNumber	
unsigned	

A	reference	to	the	blockNumber	of	the	block	containing	this	trace.	

	 subtraces	
unsigned	

Smart	contracts	are	able	to	call	into	other	smart	contracts	which	may,	in	turn,	call	into	still	other	
smart	contracts	ad-infinitum	to	the	block-level	gas	limit	imposed	by	the	node.	The	node	
represents	this	potentially	‘tree-like’	structure	as	a	flat	list	of	indexes	into	traces.	
This	field	represents	the	number	of	times	this	level	of	the	trace	called	into	other	smart	contracts.	
If,	during	the	operation	of	a	particular	external	transaction,	four	internal	message	calls	into	four	
different	smart	contracts	were	made,	this	value	would	be	‘4’.	
Any	code	that	is	reading	the	traces	(i.e.	QuickBlocks™)	must	rebuild	the	tree-like	structure	if	
needed.	Luckily,	for	our	purposes	we	are	only	interested	in	the	list	of	accounts	involved	in	the	
transaction,	therefore	we	can	safely	ignore	this	parameter.	

	 traceAddress	
list	of	addresses	

If	the	blockchain	node	stored	the	traces	of	smart	contract	calls	in	a	proper	tree-like	structure	this	
field	would	be	unnecessary.	It	represents,	as	a	flat	string,	the	zero-based	position	of	the	current	
trace	in	the	call	tree.	
As	an	example,	without	further	explanation,	the	third	call	of	the	fifth	call	of	the	first	call	of	a	
three-level	deep	trace	tree	would	be	represented	as	

[0]	[4]	[2]	
(Trace	indexes	are	zero	based.)	Because	QuickBlocks™	is	only	interested	in	the	addresses	
involved	in	a	transaction,	we	can	safely	ignore	this	field.	
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CTrace	

	 Field	Name	 Description	
	 transactionHash	

32-byte	hash	
A	reference	to	the	transactionHash	of	the	transaction	containing	this	trace.	

	 transactionPosition	
unsigned	

A	reference	to	the	transactionIndex	containing	this	trace.	

	 type	
string	

One	of	“call,”	“create,”	or	“suicide.”	In	the	case	of	“create”	and	“suicide”	the	callType	field	of	the	
trace	action	is	empty.	

	 action	
CTraceAction	

A	data	structure	containing,	in	effect,	the	to,	from	and	input	parameters,	as	per	the	type,	into	an	
internal	transaction.	Described	below.	

	 result	
CTraceResult	

A	data	structure	containing,	in	effect,	the	output	of	the	internal	transactions	as	per	the	type	
above.	Described	below.	
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Appendix	A.6	–	The	CTraceAction	Data	Structure	
	

CTraceAction	

	 Field	Name	 Description	
	 callType	

string	
If	the	value	of	type	in	the	containing	CTrace	is	other	than	“create”	or	“suicide,”	this	value	indicates	
the	type	of	call.	This	field	takes	on	values	from	“call,”	“callcode,”	“delegatecall,”	or	[other]?	

	 from	
20-byte	address	

The	address	of	the	calling	smart	contract,	nearly	identical	in	meaning	to	the	from	parameter	in	
the	transaction	object.	

	 to	
20-byte	address	

The	address	of	the	smart	contract	being	called,	nearly	identical	in	meaning	to	the	to	field	in	the	
external	transaction	object.	

	 input	
bytes	

The	input	data	for	the	current	call	with	identical	meaning	to	the	input	data	described	in	the	
external	transaction.	

	 value	
big	unsigned	

The	value	of	the	current	call	with	identical	meaning	to	the	value	data	described	in	the	external	
transaction.	

	 gas	
big	unsigned	

The	maximum	gas	allowed	for	the	current	call	with	identical	meaning	to	the	gas	data	described	in	
the	external	transaction.	
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Appendix	A.7	–	The	CTraceResult	Data	Structure	
	

CTraceResult	

	 Field	Name	 Description	
	 gasUsed	

big	unsinged	
The	amount	of	gas	used	during	the	execution	of	this	internal	contract	call.	

	 output	
bytes	

The	return	value	of	the	internal	call,	if	any.	
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Appendix	A.8	–	Command	Structure	of	Interactive	Blockchain	Transaction	Debugger	
	

Commands	available	from	smart	contract	transactional	debugger	

	 Command	 Meaning	
	 (c)orrect	 Correct	the	current	imbalance	and	continue	to	the	next	imbalance	(if	any)	
	 (a)utocorrect	 Toggle	autocorrect	(allows	pressing	enter	to	correct)	
	 (p)lay	 Play	a	block.txid.traceid	or	'+'	for	next,	'-'	for	prev	
	 (t)race	 Retrace	the	previous	transaction	(enter	't'	plus	tab	to	scroll	through	recent	transactions	from	the	

buffer)	
	 (b)uffer	 Show	the	transaction	buffer	(including	transaction	hashes)	
	 (e)thscan	 Open	a	block,	account,	or	transaction	in	http://ethscan.io	
	 (s)ource	 View	a	smart	contract's	source	code	(if	found)	
	 (l)ist	 Show	the	list	of	accounts	being	debugged	
	 confi(g)	 Edit	the	monitor’s	config	file	
	 (v)erbose	 Toggle	auto	trace	
	 clea(r)	 Clear	the	screen	
	 (q)uit	 Quit	the	current	monitor	program	
	 (h)elp		 Display	this	screen	
	


